Navigation Links
Biologists discover a key regulator in the pacemakers of our brain and heart
Date:4/25/2014

Biologists have discovered how an outer shield over T-type channels change the electrochemical signaling of heart and brain cells. Understanding how these shields work will help researchers eventually develop a new class of drugs for treating epilepsy, cardiovascular disease and cancer.

The study from the University of Waterloo is published in the Journal of Biological Chemistry today and is featured as the "Paper of the Week" for its significance.

The researchers discovered T-type channels in the pond snail, Lymnaea stagnalis, can shift from using calcium ions to using sodium ions to generate the electrical signal because of an outer shield of amino acids called a turret situated above the channel's entrance.

Low voltage T-type channels generate tiny pulses of current at regular intervals by selectively passing positively charged cations across the cell's membrane through a gate-like channel. The channels are normally extremely selective, allowing just one sodium ion to pass for every 10,000 calcium ions.

The resulting rhythmic signals produced by this transfer of cations are what support the synchronous contraction of our heart muscles and neuronal firing in parts of the brain, like the thalamus, which helps regulate our sleep-wake cycle, or circadian rhythm.

In addition to their published findings, the researchers also found the shield-like turrets in pond snails restrict access of therapeutic drugs to the channel.

T-type channels in pond snails and other invertebrates are similar to those found in humans. Although pond snails reach only 7 cm in length, its simple neural network and physiology make it a popular model organism with neurobiologists.

Over-active T-type channels are linked to epilepsy, cardiac problems, neuropathic pain, as well as the spreading of several kinds of cancer. Drugs that could quench out-of-control T-type channel activity are unable to bind to the channels themselves.

"We wanted to understand the molecular structures of T-type channels," said Spafford. "How they pass ionic currents to generate electrical activity, and to identify drug binding sites, and the drugs which may block these channels to treat neurological disease or heart complications."

The group is currently investigating how dismantling this extracellular turret will improve drug access and binding in T-type channels.


'/>"/>
Contact: Nick Manning
nmanning@uwaterloo.ca
519-888-4451
University of Waterloo
Source:Eurekalert  

Related biology news :

1. Stanford biologists help solve fungal mysteries
2. Biologists develop nanosensors to visualize movements and distribution of plant hormone
3. Climate change a likely culprit in coqui frogs altered calls, say UCLA biologists
4. Neurobiologists find chronic stress in early life causes anxiety, aggression in adulthood
5. SU biologists use sound to identify breeding grounds of endangered whales
6. Rice synthetic biologists shine light on genetic circuit analysis
7. Oddball science has proven worth, say UMass Amherst biologists
8. Are invasive plants a problem in Europe? Controversial views among invasion biologists
9. Penn biologists establish new method for studying RNAs regulatory footprint
10. Marine biologists unmask species diversity in coral reefs
11. New method of DNA editing allows synthetic biologists to unlock secrets of a bacterial genome
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Biologists discover a key regulator in the pacemakers of our brain and heart
(Date:1/7/2016)... NEW YORK , Jan. 7, 2016 ... as regional markets for biometric technologies and devices, identifying ... application market for various types of biometric devices. Includes ... report to: Identify newer markets and explore the ... of biometric devices. Examine each type of biometric technology, ...
(Date:1/7/2016)... -- A United States District Court in Illinois ... to interpret a biometric privacy statute in a decision ... photo website Shutterfly brought by the law firm Carey Rodriguez ... SHUTTERFLY, INC.; and THISLIFE, INC ( N.D. Ill ., ... Illinois Biometric Privacy Act by collecting and scanning face ...
(Date:1/6/2016)... Jan. 6, 2016 Based on its ... & Sullivan recognizes MorphoTrak, LLC, a U.S. subsidiary ... Frost & Sullivan Company of the Year Award. ... technology, Morpho Wave™ , has consolidated the company,s ... biometrics market. Morpho Wave is a highly ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... , Feb. 5, 2016 On Thursday, February ... information source for community, health and disaster services, and ... will integrate to enhance care coordination and service delivery ... services they need and to better connect service providers ... San Diego has handled ...
(Date:2/4/2016)... , Feb. 4, 2016  Sangamo BioSciences, Inc. ... editing, announced today that Edward Lanphier , Sangamo,s ... on the progress of Sangamo,s ZFP Therapeutic ® ... strategy at 2:40 pm ET on Thursday, February 11, ... Global Healthcare Conference. The conference is being held in ...
(Date:2/4/2016)... MENLO PARK, Calif. , Feb. 4, 2016   ... a biopharmaceutical company focused on the development and commercialization of ... the 18 th Annual BIO CEO & Investor ... EST in New York, NY . ... provide an update on the ongoing clinical trial of ...
(Date:2/4/2016)... ... February 04, 2016 , ... Franz ... Semantic Graph Database technology has been recognized As “ Best in Semantic Web ... Magazine. , “At Corporate America, it’s our priority to showcase prominent professionals who ...
Breaking Biology Technology: