Navigation Links
Bioinspired fibers change color when stretched
Date:1/28/2013

Cambridge, Mass. January 28, 2013 - A team of materials scientists at Harvard University and the University of Exeter, UK, have invented a new fiber that changes color when stretched. Inspired by nature, the researchers identified and replicated the unique structural elements that create the bright iridescent blue color of a tropical plant's fruit.

The multilayered fiber, described today in the journal Advanced Materials, could lend itself to the creation of smart fabrics that visibly react to heat or pressure.

"Our new fiber is based on a structure we found in nature, and through clever engineering we've taken its capabilities a step further," says lead author Mathias Kolle, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS). "The plant, of course, cannot change color. By combining its structure with an elastic material, however, we've created an artificial version that passes through a full rainbow of colors as it's stretched."

Since the evolution of the first eye on Earth more than 500 million years ago, the success of many organisms has relied upon the way they interact with light and color, making them useful models for the creation of new materials. For seeds and fruit in particular, bright color is thought to have evolved to attract the agents of seed dispersal, especially birds.

The fruit of the South American tropical plant, Margaritaria nobilis, commonly called "bastard hogberry," is an intriguing example of this adaptation. The ultra-bright blue fruit, which is low in nutritious content, mimics a more fleshy and nutritious competitor. Deceived birds eat the fruit and ultimately release its seeds over a wide geographic area.

"The fruit of this bastard hogberry plant was scientifically delightful to pick," says principal investigator Peter Vukusic, Associate Professor in Natural Photonics at the University of Exeter. "The light-manipulating architecture its surface layer presents, which has evolved to serve a specific biological function, has inspired an extremely useful and interesting technological design."

Vukusic and his collaborators at Harvard studied the structural origin of the seed's vibrant color. They discovered that the upper cells in the seed's skin contain a curved, repeating pattern, which creates color through the interference of light waves. (A similar mechanism is responsible for the bright colors of soap bubbles.) The team's analysis revealed that multiple layers of cells in the seed coat are each made up of a cylindrically layered architecture with high regularity on the nano- scale.

The team replicated the key structural elements of the fruit to create flexible, stretchable and color-changing photonic fibers using an innovative roll-up mechanism perfected in the Harvard laboratories.

"For our artificial structure, we cut down the complexity of the fruit to just its key elements," explains Kolle. "We use very thin fibers and wrap a polymer bilayer around them. That gives us the refractive index contrast, the right number of layers, and the curved, cylindrical cross-section that we need to produce these vivid colors."

The researchers say that the process could be scaled up and developed to suit industrial production.

"Our fiber-rolling technique allows the use of a wide range of materials, especially elastic ones, with the color-tuning range exceeding by an order of magnitude anything that has been reported for thermally drawn fibers," says coauthor Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at Harvard SEAS, and Kolle's adviser. Aizenberg is also Director of the Kavli Institute for Bionano Science and Technology at Harvard and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

The fibers' superior mechanical properties, combined with their demonstrated color brilliance and tunability, make them very versatile. For instance, the fibers can be wound to coat complex shapes. Because the fibers change color under strain, the technology could lend itself to smart sports textiles that change color in areas of muscle tension, or that sense when an object is placed under strain as a result of heat.


'/>"/>

Contact: Caroline Perry
cperry@seas.harvard.edu
617-496-1351
Harvard University
Source:Eurekalert  

Related biology news :

1. Stem cells + nanofibers = Promising nerve research
2. MRI research sheds new light on nerve fibers in the brain
3. Composite nanofibers developed by Penn scientists next chapter in orthopaedic biomaterials
4. Study provides new insights into structure of heart muscle fibers
5. Inexpensive, abundant starch fibers could lead to ouchless bandages
6. New research underscores the health benefits of fibers, including bone health
7. Nanocrystal-coated fibers might reduce wasted energy
8. Killer silk: Making silk fibers that kill anthrax and other microbes in minutes
9. Pandemic controversies: The global response to pandemic influenza must change
10. Modifications of a nanoparticle can change chemical interactions with cell membranes
11. Parasites of Madagascars lemurs expanding with climate change
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bioinspired fibers change color when stretched
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... 30, 2017 Trends, opportunities and forecast in ... by technology (fingerprint, AFIS, iris recognition, facial recognition, hand ... by end use industry (government and law enforcement, commercial ... banking, and others), and by region ( North ... Asia Pacific , and the Rest of ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed Anwar ... prestigious international IAIR Award for the most innovative high security ePassport and ... ... Maldives Immigration Controller General, Mr. Mohamed ... the right) have received the IAIR award for the "Most innovative high ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... August 15, 2017 , ... The Conference Forum ... 360° (IO360°) programming through a series of upcoming panels and events. The partnership culminates ... at The Roosevelt Hotel in New York City. , “With our experience in producing ...
(Date:8/14/2017)... (PRWEB) , ... August 14, 2017 , ... ... characterized and performing antibodies. Key researchers in the antibody community have recently come ... and consistency for antibodies in the laboratory. , The team at ...
(Date:8/11/2017)... , Aug. 11, 2017  Market ... New York Times article regarding the telemedicine ... according to Kalorama Information.  The article, ... for That"  used information from Kalorama ... Monitoring & Telemedicine Market  (Sleep, Diabetes, ...
(Date:8/11/2017)... WI (PRWEB) , ... August 11, 2017 , ... ... in food production, and, in particular, more natural alternatives to synthetic ingredients,” said ... innovation of Third Wave, with the established manufacturing presence and know-how of Biorigin ...
Breaking Biology Technology: