Navigation Links
Bioengineers succeed in producing plastic without the use of fossil fuels
Date:11/22/2009

A team of pioneering South Korean scientists have succeeded in producing the polymers used for everyday plastics through bioengineering, rather than through the use of fossil fuel based chemicals. This groundbreaking research, which may now allow for the production of environmentally conscious plastics, is published in two papers in the journal Biotechnology and Bioengineering to mark the journal's 50th anniversary.

Polymers are molecules found in everyday life in the form of plastics and rubbers. The team, from the prestigious KAIST University and the Korean chemical company LG Chem, led by Professor Sang Yup Lee focused their research on Polylactic Acid (PLA), a bio-based polymer which holds the key to producing plastics through natural and renewable resources.

"The polyesters and other polymers we use everyday are mostly derived from fossil oils made through the refinery or chemical process," said Lee. "The idea of producing polymers from renewable biomass has attracted much attention due to the increasing concerns of environmental problems and the limited nature of fossil resources. PLA is considered a good alternative to petroleum based plastics as it is both biodegradable and has a low toxicity to humans."

Until now PLA has been produced in a two-step fermentation and chemical process of polymerization, which is both complex and expensive. Now, through the use of a metabolically engineered strain of E.coli, the team , have developed a one-stage process which produces polylactic acid and its copolymers through direct fermentation. This makes the renewable production of PLA and lactate-containing copolymers cheaper and more commercially viable.

"By developing a strategy which combines metabolic engineering and enzyme engineering, we've developed an efficient bio-based one-step production process for PLA and its copolymers," said Lee. "This means that a developed E. coli strain is now capable of efficiently producing unnatural polymers, through a one-step fermentation process,"

This combined approach of systems-level metabolic engineering and enzyme engineering now allows for the production of polymer and polyester based products through direct microbial fermentation of renewable resources.

"Global warming and other environmental problems are urging us to develop sustainable processes based on renewable resources," concluded Lee. "This new strategy should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources".


'/>"/>

Contact: Ben Norman
Benorman@wiley.com
44-124-377-0375
Wiley-Blackwell
Source:Eurekalert

Related biology news :

1. New method developed by UC San Diego bioengineers gives regenerative medicine a boost
2. UC San Diego bioengineers fill holes in science of cellular self-organization
3. Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces
4. Targacepts P.2b depression study succeeds: 6-point difference on HAM-D
5. Project succeeding to relocate Caspian terns
6. Nanotech companies need clear environment and health roadmap to succeed
7. CHEO RI study uses sophisticated genetic engineering to improve insulin-producing beta cells
8. Press statement on new CDC MMWR on Klebseilla pneumonia Carbapenemase-producing organisms
9. Shape changes in aroma-producing molecules determine the fragrances we detect
10. Reproducing early and often is the key to rapid evolution in plants
11. UNC scientists turn human skin cells into insulin-producing cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life Sciences , ... life sciences and healthcare industries, announces a presentation by Subbu Viswanathan and Jennifer ... “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary approach to ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in ... professor in Harvard University’s Departments of Physics and Astronomy, has been selected for membership ... the winning team for the 2015 Breakthrough Prize in Fundamental physics for the discovery ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first ... accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using their own ...
(Date:10/5/2017)... ... , ... LabRoots , the leading provider of educational and interactive virtual ... to cancer research with a month-long promotion supporting the advancement of breast cancer research ... use promo code PinkRibbon to get 10 percent off their purchase of every the ...
Breaking Biology Technology: