Navigation Links
Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces

University of Pennsylvania researchers have designed a nanoscale system to observe and measure how individual cells react to external forces.

By combining microfabricated cantilevers and magnetic nanowire technology to create independent, nanoscale sensors, the study showed that cells respond to outside forces and demonstrated a dynamic biological relationship between cells and their environment.

The study also revealed that cells sense force at a single adhesion point that leads not to a local response but to a remote response from the cells internal forces, akin to tickling the cells elbow and watching the knee kick.

The cell senses the force that we apply and adjusts its own internal forces to compensate, Chris Chen, an associate professor in the Department of Bioengineering in the School of Engineering and Applied Science at Penn, said. This suggests that either the cells cytoskeleton dictates the reaction or the cell organizes a biochemical response. In either instance, cells are adapting at the microscale.

The findings prove useful to more than just an understanding of the mechanics of single cells. Physical forces play a strong role in how whole tissue grows and functions. Using the Penn system, researchers could monitor for differences in how forces are sensed or generated in normal and diseased cells. This could lead to new therapeutic drug targets and to methods for modifying how cells interact with each other.

To study the cells biomechanical response to forces, Chen and his team applied force to each cell using microfabricated arrays of magnetic posts containing cobalt nanowires interspersed amongst an array of non-magnetic posts. In the magnetic field, the posts with nanowires applied an external force to cells cultured on the tops of the posts. Nonmagnetic posts acted as sensors in which traction forces in each cell were measured. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes.

For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost or uniformly across the whole cell but instead occurred at discrete locations along the cell periphery. Together, these data suggest that cells actively adjust their internal tension to mechanical forces arising in their microenvironment and reveal an important dynamic biological relationship between external and internal forces.

Mechanical forces contribute to many cellular functions, including changes in gene expression, proliferation and differentiation.

Applying shear or tensile stresses to cells in culture, for example, can induce changes in adhesion regulation, intracellular signaling and cell function much like internal forces do. The similarities in cellular responses to external and internal forces have led to the suggestion that both types of forces may use shared mechanotransduction pathways to convert mechanical stimuli into biochemical signals. While externally applied and internally generated forces may act independently on cells, the University of Pennsylvania team postulated and then showed that they are coupled.


Contact: Jordan Reese
University of Pennsylvania

Related biology news :

1. Bioengineers create stable networks of blood vessels
2. Rice bioengineers pioneer techniques for knee repair
3. University of Manchester makes made-to-measure skin and bones a reality using inkjet printers
4. New protein discovered by Hebrew University researchers
5. Next Generation Body Scanner Launched By The University Of Manchester
6. Roundup®highly lethal to amphibians, finds University of Pittsburgh researcher
7. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
8. University of Nevada, Reno research team discovers hormone that causes malaria mosquito to urinate
9. Carnegie Mellon University research reveals how cells process large genes
10. University of Delaware researchers develop cancer nanobomb
11. University of Arizona plant scientists to unravel maize genome
Post Your Comments:
(Date:11/19/2015)... , Nov. 19, 2015  Based on its ... & Sullivan recognizes BIO-key with the 2015 Global Frost ... year, Frost & Sullivan presents this award to the ... catering to the needs of the market it serves. ... line meets and expands on customer base demands, the ...
(Date:11/17/2015)... , November 17, 2015 Paris ...   --> Paris from 17 th ... DERMALOG, the biometrics innovation leader, has invented the first combined ... on the same scanning surface. Until now two different scanners ... one scanner can capture both on the same surface. ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... -- Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting ... Israel time, at the law offices of ... th Floor, Tel Aviv, Israel . ... Izhak Tamir to the Board of Directors; , election of ... approval of an amendment to certain terms of options granted to our ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... the environment are paramount. Insertion points for in-line sensors can represent a weak ... the InTrac 781/784 series of retractable sensor housings , which are designed ...
(Date:11/24/2015)... , Nov. 24, 2015 /CNW Telbec/ - ProMetic Life Sciences ... today that Mr. Pierre Laurin , President and Chief ... at the upcoming Piper Jaffray 27 th Annual Healthcare ... on December 1-2, 2015. st , at ... one-on-one meetings throughout the day. The presentation will be available ...
(Date:11/24/2015)... , Nov. 24, 2015  PDL BioPharma, Inc. (PDL) (NASDAQ: ... , the company,s president and chief executive officer, will present ... next week in New York City . ... Tuesday, December 1, 2015 at 9:30 a.m. EST. ... to the website at least 15 minutes prior to the ...
Breaking Biology Technology: