Navigation Links
Bioengineer studying how to send drugs to lungs through nanotechnology
Date:1/23/2013

A UT Arlington bioengineering researcher has teamed with a UT Southwestern colleague to develop a nanoparticle drug delivery system that will help stimulate lung growth and function after partial lung removal or destructive lung disease.

Kytai Nguyen, an associate professor of bioengineering, is working on the drug-delivery portion of the project, which is funded through a $3.4 million National Institutes of Health grant through 2016. Nguyen's work will be underwritten by $440,000 of the larger grant.

"We will introduce drugs through inhaled nanoparticles that will stimulate lung growth and remodeling following partial lung removal," said Nguyen, who joined UT Arlington's College of Engineering in 2005 and holds a joint appointment with UT Southwestern Medical Center of Dallas.

"We will synthesize biocompatible, biodegradable polymers that will encapsulate, or load, and release the drugs where needed."

The polymer used to house the drugs will degrade with time, allowing the drugs to be released within the lung. Various polymers can be used to control this drug-release time. Magnetic or fluorescent labels may be incorporated into the nanoparticles as tracers initially, but omitted in final therapeutic formulations.

Connie Hsia, a professor of Internal Medicine at UT Southwestern will direct the overall project. She said that once the drugs are delivered via nanoparticles, the research team would be able to measure therapeutic response using non-invasive imaging, physiological testing, and detailed structural analysis.

"This research is important because currently there is no definitive cure for most destructive lung diseases except transplantation," Hsia said. "We have shown that partial lung removal may trigger regrowth of the remaining lung to compensate for the loss. Using nanoparticle as a vehicle for delivery of therapeutic compounds, we hope to amplify the lung's innate potential for regrowth."

Nguyen and Hsia hope their work will lead to better quality of life for people who have had a part of their lungs removed by surgery or destroyed by disease.

Nguyen has studied how physical and biological factors influence the proliferation of vascular smooth muscle cells, a condition that can lead to heart disease. She also has conducted research using focused laser beams called optical tweezers in nanoparticle-cell manipulation with Samarendara Mohanty, a UT Arlington associate physics professor.

Nguyen's work is representative of the research under way at The University of Texas at Arlington, a comprehensive undergraduate and graduate institution of nearly 33,000 students in the heart of North Texas. Visit www.uta.edu to learn more.


'/>"/>

Contact: Herb Booth
hbooth@uta.edu
817-272-7075
University of Texas at Arlington
Source:Eurekalert  

Related biology news :

1. Bioengineered marine algae expands environments where biofuels can be produced
2. Stanford bioengineer Christina Smolke wins NIH Directors Pioneer Award
3. Investigation of American Oriental Bioengineering, Inc. by Securities Lawyers at Goldfarb LLP Law Firm for Potential Shareholder Claim
4. U of M to lead international virtual institute studying climatic and human effects on Earth
5. Studying sex differences in autism focus of $15 million NIH award to Yale center
6. Genetic research develops tools for studying diseases, improving regenerative treatment
7. Seizures linked to surgery drugs can be prevented by anesthetics, U of T team finds
8. The role of stem cells in developing new drugs
9. Study suggests caution and further studies on drugs used to treat macular degeneration
10. Mosquito virus could lead to new vaccines and drugs
11. Getting (drugs) under your skin
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bioengineer studying how to send drugs to lungs through nanotechnology
(Date:4/28/2016)... and BANGALORE, India , April 28, 2016 ... a product subsidiary of Infosys (NYSE: INFY ), ... a global partnership that will provide end customers ... mobile banking and payment services.      (Logo: ... innovation area for financial services, but it also plays a ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: