Navigation Links
Biodegradable particles can bypass mucus, release drugs over time
Date:1/4/2010

Johns Hopkins University researchers have created biodegradable nanosized particles that can easily slip through the body's sticky and viscous mucus secretions to deliver a sustained-release medication cargo.

The researchers say these nanoparticles, which degrade over time into harmless components, could one day carry life-saving drugs to patients suffering from dozens of health conditions, including diseases of the eye, lung, gut or female reproductive tract.

The mucus-penetrating biodegradable nanoparticles were developed by an interdisciplinary team led by Justin Hanes, a professor of chemical and biomolecular engineering in the Whiting School of Engineering at Johns Hopkins. The team's work was reported recently in the Proceedings of the National Academy of Sciences. Hanes' collaborators included cystic fibrosis expert Pamela Zeitlin, a professor of pediatrics at the Johns Hopkins School of Medicine and director of pediatric pulmonary medicine at the Johns Hopkins Children's Center.

These nanoparticles, Zeitlin said, could be an ideal means of delivering drugs to people with cystic fibrosis, a disease that kills children and adults by altering the mucus barriers in the lung and gut.

"Cystic fibrosis mucus is notoriously thick and sticky and represents a huge barrier to aerosolized drug delivery," she said. "In our study, the nanoparticles were engineered to travel through cystic fibrosis mucus at a much greater velocity than ever before, thereby improving drug delivery. This work is critically important to moving forward with the next generation of small molecule and gene-based therapies."

Beyond their potential applications for cystic fibrosis patients, the nanoparticles also could be used to help treat disorders such as lung and cervical cancer, and inflammation of the sinuses, eyes, lungs and gastrointestinal tract, said Benjamin C. Tang, lead author of the recent journal article and a postdoctoral fellow in the Department of Chemical and Biomolecular Engineering.

"Chemotherapy is typically given to the whole body and has many undesired side effects," he said. "If drugs are encapsulated in these nanoparticles and inhaled directly into the lungs of lung cancer patients, drugs may reach lung tumors more effectively, and improved outcomes may be achieved, especially for patients diagnosed with early stage nonsmall cell lung cancer."

In the lungs, eyes, gastrointestinal tract and other areas, the human body produces layers of mucus to protect sensitive tissue. But an undesirable side effect is that these mucus barriers can also keep helpful medications away.

In proof-of-concept experiments, previous research teams led by Hanes earlier demonstrated that latex particles coated with polyethylene glycol could slip past mucus coatings. But latex particles are not a practical material for delivering medication to human patients because they are not broken down by the body. In the new study, the researchers described how they took an important step forward in making new particles that biodegrade into harmless components while delivering their drug payload over time.

"The major advance here is that we were able make biodegradable nanoparticles that can rapidly penetrate thick and sticky mucus secretions, and that these particles can transport a wide range of therapeutic molecules, from small molecules such as chemotherapeutics and steroids to macromolecules such as proteins and nucleic acids," Hanes said. "Previously, we could not get these kinds of sustained-release treatments through the body's sticky mucus layers effectively."

The new biodegradable particles comprise two parts made of molecules routinely used in existing medications. An inner core, composed largely of polysebacic acid (PSA), traps therapeutic agents inside. A particularly dense outer coating of polyethylene glycol (PEG) molecules, which are linked to PSA, allows a particle to move through mucus nearly as easily as if it were moving through water and also permits the drug to remain in contact with affected tissues for an extended period of time.

In Hanes' previous studies with mucus-penetrating particles, latex particles could be effectively coated with PEG but could not release drugs or biodegrade. Unlike latex, however, PSA can degrade into naturally occurring molecules that are broken down and flushed away by the body through the kidney, for example. As the particles break down, the drugs loaded inside are released.

This property of PSA enables the sustained release of drugs, said Samuel Lai, assistant research professor in the Department of Chemical and Biomolecular Engineering, while designing them for mucus penetration allows them to more readily reach inaccessible tissues.

Jie Fu, an assistant research professor, also from the Department of Chemical and Biomolecular Engineering, said, "As it degrades, the PSA comes off along with the drug over a controlled amount of time that can reach days to weeks."

Polyethylene glycol acts as a shield to protect the particles from interacting with proteins in mucus that would cause them to be cleared before releasing their contents. In a related research report, the group showed that the particles can efficiently encapsulate several chemotherapeutics, and that a single dose of drug-loaded particles was able to limit tumor growth in a mouse model of lung cancer for up to 20 days.


'/>"/>

Contact: Mary Spiro
mspiro@jhu.edu
410-516-4802
Johns Hopkins University
Source:Eurekalert

Related biology news :

1. Biodegradable polymers show promise for improving treatment of acute inflammatory diseases
2. Project aims to reduce complications, multiple surgeries with biodegradable implantable devices
3. Biodegradable mulch films on the horizon
4. Stanford researchers develop biodegradable substitutes for wood, plastic bottles and other materials
5. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
6. Worldwide atmospheric measurements will determine the role of atmospheric fine particles
7. MIT: Remote-control nanoparticles deliver drugs directly into tumors
8. MIT sculpts 3-D particles with light
9. Tiny dust particles from Asian deserts common over western United States
10. Mesothelin engineered on virus-like particles provides treatment clues for pancreatic cancer
11. Researchers mimic bacteria to produce magnetic nanoparticles
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/19/2016)... -- Securus Technologies, a leading provider of civil and ... and monitoring, announced today that it has offered a ... independent technology judge determine who has the largest and ... calling platform, and the best customer service. ... what we do – which clearly is not the ...
(Date:11/16/2016)... 2016 Sensory Inc ., a ... for consumer electronics, and VeriTran , a ... industry, today announced a global partnership that will ... authenticate users of mobile banking and mobile payments ... software which requires no specialized biometric scanners, yet ...
(Date:11/14/2016)... -- xG Technology, Inc. ("xG" or the "Company") (Nasdaq: XGTI, ... use in challenging operating environments, announced its results for ... hold a conference call to discuss these results on ... below). Key Recent Accomplishments ... to acquire Vislink Communication Systems. The purchase is expected ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, ... essential device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's ... is a small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket ...
(Date:12/8/2016)... ... 2016 , ... KBioBox llc announced today the launch of ... a sophisticated “3 click” gene dditing off target analysis program and a “3 ... https://www.kbiobox.com/ and powered by the company’s proprietary BioEngine. Scientists, pharmaceutical researchers ...
(Date:12/8/2016)... 2016  Soligenix, Inc. (OTCQB: SNGX) (Soligenix or ... developing and commercializing products to treat rare diseases ... today the long-term follow-up data from its Phase ... Innate Defense Regulator (IDR), in the treatment of ... patients undergoing chemoradiation therapy (CRT).  The additional 12-month ...
(Date:12/8/2016)... , Dec. 8, 2016 Eutilex Co. Ltd. ... KRW (US $18.9M) Series A financing. This financing round ... Tech Venture and SNU Bio Angel. This new funding ... billion KRW (US $27.7M) since its founding in 2015. ... bolster the development and commercialization of its immuno-oncology programs, ...
Breaking Biology Technology: