Navigation Links
Biochemists uphold law of physics
Date:7/15/2013

Experiments by biochemists at the University of California, Davis show for the first time that a law of physics, the ergodic theorem, can be demonstrated by a collection of individual protein molecules -- specifically, a protein that unwinds DNA. The work will be published online by the journal Nature on July 14.

Using technology invented at UC Davis for watching single enzymes at work, Bian Liu, a graduate student in the Biophysics Graduate Group and professor Steve Kowalczykowski, Department of Microbiology and Molecular Genetics and UC Davis Cancer Center, found that when they paused and restarted a single molecule of the DNA-unwinding enzyme RecBCD, it could restart at any speed achieved by the whole population of enzymes.

"It's pretty impressive," said Daniel Cox, a physics professor at UC Davis who was not involved in the work. "The laws of physics should apply to biological systems, and it turns out they do."

The results also have implications for understanding how proteins fold into their correct shape, for exploring interactions between drugs and their targets, and for engineering enzymes for new functions.

The ergodic theorem, proposed by mathematician George Birkhoff in 1931, holds that if you follow an individual particle over an infinite amount of time, it will go through all the states that are seen in an infinite population at an instant in time. It's a fundamental assumption in statistical mechanics -- but difficult to prove in an experiment.

Liu and Kowalczykowski weren't attempting to test laws of physics when they began the work. They wanted to know why RecBCD, an enzyme that unwinds DNA in E. coli bacteria, showed so much variability in its rate of action.

RecBCD attaches to and moves along DNA, unwinding the double helix into two separate strands. It has two jobs in the cell: to allow damaged DNA to be repaired, and to break down invading "foreign" DNA from viruses.

In 2001, Kowalczykowski's laboratory, with the late professor Ronald Baskin at UC Davis, developed a technique to trap single molecules of RecBCD and watch them at work on a strand of DNA in real time. They have since exploited the method to study how DNA is repaired -- in humans, a vital process in protecting against cancer and developmental defects.

"Ever since the original experiments, we've noticed RecBCD molecules have quite a broad range of speeds," Kowalczykowski said.

Liu used the single-molecule visualization technique to measure the rates of hundreds of RecBCD molecules, finding bell-shaped curves for the whole population.

One explanation could be that a large proportion of the proteins were not folded properly and were "trapped" in an inefficient state. However, mild heat or unfolding treatments, which should have allowed the proteins to relax into their correct folded state, had no effect.

RecBCD usually runs for about a minute before stopping spontaneously. Liu found that he could stop the enzyme early by taking away ATP, the chemical fuel that makes the enzyme work.

When he brought back the fuel, he found that the enzymes started up again -- but at a random speed, not related to their previous rate. Overall, the individual RecBCD proteins could restart at any speed within the bell-shaped spread shown by all the proteins.

The experiment shows that RecBCD can move through a wide range of slightly different conformations in which it works at slightly different speeds. However, when it is attached to a step on the DNA ladder, it is locked in shape. Because the time for the enzyme to move from step to step along DNA is shorter than the time it needs to change conformation (about one second), it remains in the same conformation as long as it is moving along DNA, Kowalczykowski said.

What is the point? Why not just have all the enzymes work at one, optimal rate? Having this important enzyme able to operate at a range of speeds might give the cell flexibility to respond to rapidly changing conditions, Kowalczykowski said. For example, degradation of foreign DNA is a process that needs to go quite fast: copying and repairing DNA might require the enzyme to work more slowly, in combination with other proteins.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert

Related biology news :

1. UMass Amherst biochemists developing tools to stop plague and other bacterial threats
2. Wayne State welcomes undergraduates from around the US for physics research experience
3. Discovery of new material state counterintuitive to laws of physics
4. Frontiers launches new open-access journal in physics
5. UT Arlington physics team demonstrates new power generation technique
6. New book on physics principles by Wayne State professor explains life as we know it
7. How a fish broke a law of physics
8. Physics and math shed new light on biology by mapping the landscape of evolution
9. Physics confirms sprinters are performing better than ever before
10. The physics of going viral
11. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... On Monday, the Department of Homeland Security (DHS) issued ... the Biometric Exit Program. The Request for Information (RFI), ... that CBP intends to add biometrics to confirm when ... , in order to deter visa overstays, to ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created ... and solutions to the healthcare market. The company's primary focus is on new ... and marketing strategies that are necessary to help companies efficiently bring their products ...
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... on a range of subjects including policies, debt and investment ... Speaking at a lecture to the Canadian Economics ... the country,s inflation target, which is set by both the ... "In certain areas there needs to be frequent ... not sit down and address strategy together?" He ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
Breaking Biology Technology: