Navigation Links
Biochemists uphold law of physics
Date:7/15/2013

Experiments by biochemists at the University of California, Davis show for the first time that a law of physics, the ergodic theorem, can be demonstrated by a collection of individual protein molecules -- specifically, a protein that unwinds DNA. The work will be published online by the journal Nature on July 14.

Using technology invented at UC Davis for watching single enzymes at work, Bian Liu, a graduate student in the Biophysics Graduate Group and professor Steve Kowalczykowski, Department of Microbiology and Molecular Genetics and UC Davis Cancer Center, found that when they paused and restarted a single molecule of the DNA-unwinding enzyme RecBCD, it could restart at any speed achieved by the whole population of enzymes.

"It's pretty impressive," said Daniel Cox, a physics professor at UC Davis who was not involved in the work. "The laws of physics should apply to biological systems, and it turns out they do."

The results also have implications for understanding how proteins fold into their correct shape, for exploring interactions between drugs and their targets, and for engineering enzymes for new functions.

The ergodic theorem, proposed by mathematician George Birkhoff in 1931, holds that if you follow an individual particle over an infinite amount of time, it will go through all the states that are seen in an infinite population at an instant in time. It's a fundamental assumption in statistical mechanics -- but difficult to prove in an experiment.

Liu and Kowalczykowski weren't attempting to test laws of physics when they began the work. They wanted to know why RecBCD, an enzyme that unwinds DNA in E. coli bacteria, showed so much variability in its rate of action.

RecBCD attaches to and moves along DNA, unwinding the double helix into two separate strands. It has two jobs in the cell: to allow damaged DNA to be repaired, and to break down invading "foreign" DNA from viruses.

In 2001, Kowalczykowski's laboratory, with the late professor Ronald Baskin at UC Davis, developed a technique to trap single molecules of RecBCD and watch them at work on a strand of DNA in real time. They have since exploited the method to study how DNA is repaired -- in humans, a vital process in protecting against cancer and developmental defects.

"Ever since the original experiments, we've noticed RecBCD molecules have quite a broad range of speeds," Kowalczykowski said.

Liu used the single-molecule visualization technique to measure the rates of hundreds of RecBCD molecules, finding bell-shaped curves for the whole population.

One explanation could be that a large proportion of the proteins were not folded properly and were "trapped" in an inefficient state. However, mild heat or unfolding treatments, which should have allowed the proteins to relax into their correct folded state, had no effect.

RecBCD usually runs for about a minute before stopping spontaneously. Liu found that he could stop the enzyme early by taking away ATP, the chemical fuel that makes the enzyme work.

When he brought back the fuel, he found that the enzymes started up again -- but at a random speed, not related to their previous rate. Overall, the individual RecBCD proteins could restart at any speed within the bell-shaped spread shown by all the proteins.

The experiment shows that RecBCD can move through a wide range of slightly different conformations in which it works at slightly different speeds. However, when it is attached to a step on the DNA ladder, it is locked in shape. Because the time for the enzyme to move from step to step along DNA is shorter than the time it needs to change conformation (about one second), it remains in the same conformation as long as it is moving along DNA, Kowalczykowski said.

What is the point? Why not just have all the enzymes work at one, optimal rate? Having this important enzyme able to operate at a range of speeds might give the cell flexibility to respond to rapidly changing conditions, Kowalczykowski said. For example, degradation of foreign DNA is a process that needs to go quite fast: copying and repairing DNA might require the enzyme to work more slowly, in combination with other proteins.


'/>"/>

Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert

Related biology news :

1. UMass Amherst biochemists developing tools to stop plague and other bacterial threats
2. Wayne State welcomes undergraduates from around the US for physics research experience
3. Discovery of new material state counterintuitive to laws of physics
4. Frontiers launches new open-access journal in physics
5. UT Arlington physics team demonstrates new power generation technique
6. New book on physics principles by Wayne State professor explains life as we know it
7. How a fish broke a law of physics
8. Physics and math shed new light on biology by mapping the landscape of evolution
9. Physics confirms sprinters are performing better than ever before
10. The physics of going viral
11. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... , March 21, 2017   Neurotechnology , ... recognition technologies, today announced the release of the ... which provides improved facial recognition using up to ... a single computer. The new version uses deep ... accuracy, and it utilizes a Graphing Processing Unit ...
(Date:3/20/2017)... -- PMD Healthcare announces the release of its new ... (WMS), a remote, real-time lung health monitoring and management ... a Medical Device, Digital Health, and Chronic Care Management ... solutions that empower people to improve their healthcare and ... the first ever personal spirometer, Spiro PD, which was ...
(Date:3/9/2017)... MOUNTAIN VIEW, Calif. , March 9, ... Simple," and 23andMe , the leading personal genetics ... choices.  Zipongo can now provide customers with personalized nutrition ... goals and biometrics, but also genetic markers impacting how ... Zipongo,s personalized food decision support platform uses biometrics ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... ... March 27, 2017 , ... ... the fight against cancer, autoimmune disease and more through a single-cell precision engineering ... and proteomics analysis platform developed in the laboratory of Dr. James Heath ...
(Date:3/27/2017)... , March 27, 2017  Perthera,s Chief Bioinformatics Officer ... Subha Madhavan , Ph.D., will be speaking at ... Panels. On Monday, March 27, 2017, she will be ... More Usable for Research and Care" (from 10:30 a.m. ... 2017, she will be a participant in the "Making ...
(Date:3/27/2017)... -- DarioHealth Corp. (NASDAQ: DRIO), a leading global digital ... today announced that it is now offering a 3 ... who want to have their DarioHealth products reimbursed by ... agreements with partners across the U.S. who will be ... will supply and bill the customer,s insurance for their ...
(Date:3/24/2017)... Biotech Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading provider ... that its board of directors has amended its shareholder rights plan. The ... 2017 to March 27, 2018. The amendment was not in response to ... ... Ltd. is a China -based biopharmaceutical company that ...
Breaking Biology Technology: