Navigation Links
Biochemical 'on-switch' could solve protein purification challenge
Date:10/22/2009

Drugs based on engineered proteins represent a new frontier for pharmaceutical makers. Even after they discover a protein that may form the basis of the next wonder drug, however, they have to confront a long-standing problem: how to produce large quantities of the protein in a highly pure state. Now, a multi-institutional research team including a biochemist at the National Institute of Standards and Technology (NIST) may have found* a new solution in an enzymatic "food processor" they can activate at will.

The team has found an efficient method of harvesting purified protein molecules by altering an enzyme that soil bacteria use to break down their food. In its natural form, this enzyme would be of little use to drug developers, but the team has modified it so that it can be activated at the desired moment. By creating essentially an "on-switch" for the enzyme's activity, the team has found a way to separate a single, desired protein from the mixture of thousands generated by a living cell, which remains biotechnology's natural protein factory of choice.

Bacteria use the enzyme, called subtilisin, as a sort of food processor: After producing it internally, they release the enzyme into the soil, where it uses a minuscule "blade" to chop up proteins into digestible pieces. Because it could damage the bacterium's interior, the blade has a protective sheath that only comes off once the enzyme has exited the cell.

"The enzyme and sheath are strongly attracted to each other. The enzyme's first act is to cut the sheath away," says NIST's Travis Gallagher. "The method takes advantage of their attraction in order to isolate the protein we want."

The team first creates many "sheathless" copies of the enzyme, which are modified to function only in the presence of a triggering molecule such as fluoride. The modified enzymes are bound to the surface of a strainer. Then the team uses engineered cells to generate mass quantities of a potentially therapeutic protein, each copy of which has a subtilisin sheath attached to it. After harvesting these proteins along with the thousands of others that grow in the cellular interior, they filter the mixture through the strainer, where the protein-sheath pairs are caught and stuck fast to the subtilisin while the rest of the mixture drains away.

At this point, the team flicks their switch. They add a bit of fluoride and the enzyme snips the bond between sheath and protein, releasing the desired protein free of almost all impurities. "The technique can conceivably be used to obtain any protein you like, and the process is repeatable, as the sheaths can be removed for another round of purification," Gallagher says. "For most proteins, the method can achieve greater than 95 percent purity at a single step."


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Developer of advanced computing memory, father of biochemical engineering, and innovative engineering educators win highest engineering honors of 2009
2. UT Southwestern researchers disrupt biochemical system involved in cancer, degenerative disease
3. Margarita Saenz, M.D. is recipient of Genzyme/ACMGF Fellowship in Biochemical Genetics
4. Kelvin Lee winner of Biochemical Engineering Journal Young Investigator Award
5. Newly created cancer stem cells could aid breast cancer research
6. Obesity and lack of exercise could enhance the risk of pancreatic cancer
7. Finding that 1-in-a-billion that could lead to disease
8. 60 second test could help early diagnosis of common brain diseases
9. Auto immune response creates barrier to fertility; could be a step in speciation
10. Paracetamol, one of most used analgesics, could slow down bone growth
11. Drug could improve pregnancy outcomes in wider range of women with insulin resistance
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Biochemical 'on-switch' could solve protein purification challenge
(Date:4/18/2017)... April 18, 2017  Socionext Inc., a global expert in SoC-based ... edge server, the M820, which features the company,s hybrid codec technology. ... by Tera Probe, Inc., will be showcased during the upcoming Medtec ... show at the Las Vegas Convention Center ... Click here ...
(Date:4/11/2017)... Apr. 11, 2017 Research and Markets has ... report to their offering. ... The global eye tracking market to grow at a CAGR of ... Eye Tracking Market 2017-2021, has been prepared based on an in-depth ... market landscape and its growth prospects over the coming years. The ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , ... of Cancer Research, London (ICR) and ... with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple ... as MUK nine . The University of ... is partly funded by Myeloma UK, and ICR will perform ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... and pregnancy rates in frozen and fresh in vitro fertilization (IVF) ... maternal age to IVF success. , After comparing the results from the fresh ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... San Diego-based ... of its corporate rebranding initiative announced today. The bold new look is part ... as the company moves into a significant growth period. , It will also expand ...
(Date:10/10/2017)... ... 10, 2017 , ... For the second time in three ... Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October ... US2020’s mission is to change the trajectory of STEM education in America by ...
Breaking Biology Technology: