Navigation Links
Bio-based solar cell
Date:11/21/2013

Researchers at the Ruhr-Universitt Bochum (RUB) have developed a bio-based solar cell. They embedded the two proteins photosystem 1 and 2, which in plants are responsible of photosynthesis, into complex molecules developed in-house, thus creating an efficient electron current. Headed by Prof Dr Wolfgang Schuhmann from the Department of Analytical Chemistry and Center for Electrochemical Sciences (CES) and Prof Dr Matthias Rgner from the Department of Plant Biochemistry, the team has published a report in the journal "Angewandte Chemie".

Isolating and embedding photosystems

In leaves, the photosystems 1 and 2 utilise light energy very efficiently; this is required for converting carbon dioxide into oxygen and biomass. The Bochum researchers' bio-based solar cell, on the other hand, generates electricity rather than biomass. Prof Rgner's team isolated the two photosystems from thermophilic cyanobacteria that live in a hot spring in Japan. Because of their habitat and behaviour, their photosystems are much more stable than comparable proteins of species that do not occur under extreme environmental conditions. Prof Schuhmann's team developed complex electron-conducting materials, so-called redox hydrogels. The researchers embedded the photosystems into these hydrogels in order to connect them to the electrodes of the photovoltaic cells.

Structure of the bio-based solar cell

The cell is made up of two chambers. In the first chamber, the protein photosystem 2 extracts electrons from water molecules, thus generating oxygen. The electrons migrate through the redox hydrogel to the electrode in the first chamber which is connected to the electrode in the second chamber. The electrode in the second chamber conducts the electrons via a different redox hydrogel onto photosystem 1. There, electrons are passed to oxygen; water is generated. However, the photosystems carry out these processes only if they are powered by light energy. Thus, if exposed to light, there is a continuous electricity flow within the closed system.

Efficiency may be increased

In order to convert solar into electric energy, there must be a potential difference between the two electrodes. The Bochum researchers have established this difference by deploying redox hydrogels with different potentials. The potential difference determines the bio photovoltaic cell's voltage and, consequently, its efficiency. Currently, the bio-based solar cell boasts an efficiency of several nanowatts per square centimetre. "The system may be considered a blue print for the development of semi-artificial and natural cell systems in which photosynthesis is used for the light-driven production of secondary energy carriers such as hydrogen," says Prof Rgner.


'/>"/>

Contact: Matthias Rögner
Matthias.Roegner@rub.de
49-234-322-3634
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Plastic packaging industry is moving towards completely bio-based products
2. Evonik Industries Selects OPX Biotechnologies for Joint Development of Bio-Based Chemicals
3. A new dimension for solar energy
4. Folding light: Wrinkles and twists boost power from solar panels
5. Climatic effects of a solar minimum
6. Bay Area PV Consortium announces $7.5 million in grants to lower the cost of large-scale solar
7. Weizmann Institute solar technology to convert greenhouse gas into fuel
8. Anti-aging elixir for solar cells
9. ASU awarded $3 million to research solar energy technologies, launch energy Ph.D. program
10. Microwave ovens may help produce lower cost solar energy technology
11. The George Washington University Researcher received $1.7 million to study solar cement
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... FirstHand program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand ... Excellence in Volunteer Experience from US2020. , US2020’s mission is to change the ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings ... mechanism by which its ProCell stem cell therapy ... limb ischemia.  The Company, demonstrated that treatment with ... of limbs saved as compared to standard bone ... molecule HGF resulted in reduction of therapeutic effect.  ...
Breaking Biology Technology: