Navigation Links
Bio-based solar cell
Date:11/21/2013

Researchers at the Ruhr-Universitt Bochum (RUB) have developed a bio-based solar cell. They embedded the two proteins photosystem 1 and 2, which in plants are responsible of photosynthesis, into complex molecules developed in-house, thus creating an efficient electron current. Headed by Prof Dr Wolfgang Schuhmann from the Department of Analytical Chemistry and Center for Electrochemical Sciences (CES) and Prof Dr Matthias Rgner from the Department of Plant Biochemistry, the team has published a report in the journal "Angewandte Chemie".

Isolating and embedding photosystems

In leaves, the photosystems 1 and 2 utilise light energy very efficiently; this is required for converting carbon dioxide into oxygen and biomass. The Bochum researchers' bio-based solar cell, on the other hand, generates electricity rather than biomass. Prof Rgner's team isolated the two photosystems from thermophilic cyanobacteria that live in a hot spring in Japan. Because of their habitat and behaviour, their photosystems are much more stable than comparable proteins of species that do not occur under extreme environmental conditions. Prof Schuhmann's team developed complex electron-conducting materials, so-called redox hydrogels. The researchers embedded the photosystems into these hydrogels in order to connect them to the electrodes of the photovoltaic cells.

Structure of the bio-based solar cell

The cell is made up of two chambers. In the first chamber, the protein photosystem 2 extracts electrons from water molecules, thus generating oxygen. The electrons migrate through the redox hydrogel to the electrode in the first chamber which is connected to the electrode in the second chamber. The electrode in the second chamber conducts the electrons via a different redox hydrogel onto photosystem 1. There, electrons are passed to oxygen; water is generated. However, the photosystems carry out these processes only if they are powered by light energy. Thus, if exposed to light, there is a continuous electricity flow within the closed system.

Efficiency may be increased

In order to convert solar into electric energy, there must be a potential difference between the two electrodes. The Bochum researchers have established this difference by deploying redox hydrogels with different potentials. The potential difference determines the bio photovoltaic cell's voltage and, consequently, its efficiency. Currently, the bio-based solar cell boasts an efficiency of several nanowatts per square centimetre. "The system may be considered a blue print for the development of semi-artificial and natural cell systems in which photosynthesis is used for the light-driven production of secondary energy carriers such as hydrogen," says Prof Rgner.


'/>"/>

Contact: Matthias Rögner
Matthias.Roegner@rub.de
49-234-322-3634
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Plastic packaging industry is moving towards completely bio-based products
2. Evonik Industries Selects OPX Biotechnologies for Joint Development of Bio-Based Chemicals
3. A new dimension for solar energy
4. Folding light: Wrinkles and twists boost power from solar panels
5. Climatic effects of a solar minimum
6. Bay Area PV Consortium announces $7.5 million in grants to lower the cost of large-scale solar
7. Weizmann Institute solar technology to convert greenhouse gas into fuel
8. Anti-aging elixir for solar cells
9. ASU awarded $3 million to research solar energy technologies, launch energy Ph.D. program
10. Microwave ovens may help produce lower cost solar energy technology
11. The George Washington University Researcher received $1.7 million to study solar cement
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
(Date:3/30/2017)... -- Trends, opportunities and forecast in this market to ... AFIS, iris recognition, facial recognition, hand geometry, vein recognition, ... industry (government and law enforcement, commercial and retail, health ... and by region ( North America , ... , and the Rest of the World) ...
(Date:3/27/2017)... March 27, 2017  Catholic Health Services (CHS) ... Systems Society (HIMSS) Analytics for achieving Stage 6 ... sm . In addition, CHS previously earned a ... using an electronic medical record (EMR). ... level of EMR usage in an outpatient setting.  ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 2017 , ... They call it the “hairy ball.” It’s ... of a system of linkages and connections so complex and dense that “it ... science at Worcester Polytechnic Institute (WPI) and director of the university’s bioinformatics and ...
(Date:10/12/2017)... ca (PRWEB) , ... October 12, 2017 , ... ... the Surgical Wound Market with the addition of its newest module, US Hemostats ... $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... gene in its endogenous context, enabling overexpression experiments and avoiding the use of ... small RNA guides is transformative for performing systematic gain-of-function studies. , This ...
(Date:10/11/2017)...  VMS BioMarketing, a leading provider of patient support solutions, ... Educator (CNE) network, which will launch this week. The VMS ... care professionals to enhance the patient care experience by delivering ... health care professionals to help women who have been diagnosed ... ...
Breaking Biology Technology: