Navigation Links
Bigger, better, faster
Date:10/24/2013

The molecular machine that makes essential components of ribosomes the cell's protein factories is like a Swiss-army knife, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Centro de Investigaciones Biolgicas in Madrid, Spain, have found. By determining the 3-dimensional structure of this machine, called RNA polymerase I, for the first time, the scientists found that it incorporates modules which prevent it from having to recruit outside help. The findings, published online today in Nature, can help explain why this protein works faster than its better-studied counterpart, RNA polymerase II.

"Rather than recruiting certain components from outside, RNA polymerase I has them already built in, which explains why it is bigger, and less regulated, but at the same time more efficient," says Christoph Mller from EMBL, who led the study. "Because everything is already assembled, there's no time delay," explains Maria Moreno-Morcillo, who carried out the work.

There are three different RNA polymerases, each of which makes specific types of RNA molecule. For example, RNA polymerase II makes messenger RNA the 'middle-man' that carries the information encoded in DNA to a ribosome where it can be used to make a protein. RNA polymerases I and III make parts of the machinery which reads that messenger RNA: I builds the RNA that will eventually form a ribosome, while III makes the transfer RNA that carries the protein building blocks to the ribosome for assembly. Scientists have known for over a decade what RNA polymerase II looks like and how it works, but obtaining detailed information on the structures of its counterparts has proven extremely difficult. Now that they have managed to do so for RNA polymerase I, Mller and colleagues have found explanations for some of the protein's particularities.

Part of the difficulty in studying RNA polymerase I is that it is a larger molecule than RNA polymerase II. When they determined its 3-dimensional structure, the scientists found that some of the 'extra' modules in RNA polymerase I are remarkably similar to other, separate proteins that RNA polymerase II needs to do its job. It seems that RNA polymerase I has brought those helper modules permanently on board. In another part of the molecule, Mller and colleagues found that RNA polymerase I appears to have combined what in RNA polymerase II are two separate modules into a single, multi-tasking component. Together, these changes likely explain why RNA polymerase I can produce RNA molecules at a faster rate than RNA polymerase II.

The findings also imply that the cell has fewer ways of controlling RNA polymerase I's activity, since it can't influence it by changing the availability of helper proteins as it does in the case of RNA polymerase II. But here, too, RNA polymerase I's Swiss-army knife strategy provides a solution. The structure showed that this molecular machine has a built-in regulatory mechanism: it can stop itself from attaching to DNA by bending a loop in its structure to block the space the DNA would usually dock onto.


'/>"/>

Contact: Sonia Neves
sonia.furtado@embl.de
European Molecular Biology Laboratory
Source:Eurekalert  

Related biology news :

1. Computer simulations for multiscale systems can be faster, better, more reliable
2. Oceans acidifying faster today than in past 300 million years
3. From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
4. Tiny electrical sensors could signal faster MRSA diagnosis
5. Athletic frogs have faster-changing genomes
6. What does a tree growing faster than its neighbor look like from outer space?
7. Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures
8. Exome sequencing gives cheaper, faster diagnosis in heterogeneous disease
9. Palladium-gold nanoparticles clean TCE a billion times faster than iron filings
10. Searching genomic data faster
11. Hyenas that think outside the box solve problems faster
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bigger, better, faster
(Date:1/20/2016)... SAN JOSE, Calif. , Jan. 20, 2016 ... leading developer of human interface solutions, today announced ... touch controller solution for wearables and small screen ... appliances such as printers. Supporting round and rectangular ... the S1423 offers excellent performance with moisture on ...
(Date:1/13/2016)... ALBANY, New York , January 13, 2016 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2023. According to ... mn in 2014 and is anticipated to reach US$1,625.8 ... from 2015 to 2023. In terms of volume, the ...
(Date:1/11/2016)... 11, 2016  higi, the leading retail and ... locations, web and mobile, today announced it has ... existing investors. --> ... further innovate higi,s health platform – its network ... – including expanding services and programs to retail ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... ... , ... Many of the engineers at FireflySci, Inc. have been manufacturing quartz ... from other cuvette manufacturers is their supercharged customer service and their extensive database of ... steady flow of inside information, they have recently revamped their manufacturing techniques to reduce ...
(Date:2/3/2016)... WARRINGTON, Pa. , Feb. 3, 2016 /PRNewswire/ ... biotechnology company focused on developing aerosolized KL4 surfactant ... Board of Directors has approved an inducement award ... Craig Fraser , its newly appointed President and ... the Board,s Compensation Committee on February 1, 2016 ...
(Date:2/3/2016)... Feb. 3, 2016 Ascendis Pharma A/S (Nasdaq: ... applies its innovative TransCon technology to address significant unmet ... upcoming investor conference.Event:2016 Leerink Partners Global Healthcare Conference Location: ... Wednesday, February 10, 2016 Time:  , 11:55am EST ... --> An audio webcast of this event ...
(Date:2/3/2016)... Feb. 3, 2016 New Jersey Health Foundation ... $1 million for researchers in New ... research that demonstrates exciting potential.   ... for the New Jersey Health Foundation Research Grant ... these educational institutions— Princeton University, Rutgers University, Rowan ...
Breaking Biology Technology: