Navigation Links
Better tissue healing with disappearing hydrogels
Date:6/6/2014

When stem cells are used to regenerate bone tissue, many wind up migrating away from the repair site, which disrupts the healing process. But a technique employed by a University of Rochester research team keeps the stem cells in place, resulting in faster and better tissue regeneration. The key, as explained in a paper published in Acta Biomaterialia, is encasing the stem cells in polymers that attract water and disappear when their work is done.

The technique is similar to what has already been used to repair other types of tissue, including cartilage, but had never been tried on bone.

"Our success opens the door for manyand more complicatedtypes of bone repair," said Assistant Professor of Biomedical Engineering Danielle Benoit. "For example, we should now be able to pinpoint repairs within the periosteumor outer membrane of bone material."

The polymers used by Benoit and her teams are called hydrogels because they hold water, which is necessary to keep the stem cells alive. The hydrogels, which mimic the natural tissues of the body, are specially designed to have an additional feature that's vital to the repair process; they degrade and disappear before the body interprets them as foreign bodies and begins a defense response that could compromise the healing process.

Because stem cells have the unique ability to develop into many different types of cells, they are an important part of the mechanism for repairing body tissue. At present, unadulterated therapeutic stem cells are injected into the bone tissue that needs to be repaired. Benoit believed hydrogels would allow the stem cells to finish the job of initiating repairs, then leave before overstaying their welcome.

The research team tested the hypothesis by transplanting cells onto the surface of mouse bone grafts and studying the cell behavior both in vivoinside the animaland in vitrooutside the body. They started by removing all living cells from donor bone fragments, so that the tissue regeneration could be accomplished only by the stem cells.

In order to track the progress of the research, the stem cells were genetically modified to include genes that give off fluorescence signals. The bone material was then coated with the hydrogels, which contained the fluorescently labeled stem cells, and implanted into the defect of the damaged mouse bone. At that point, the researchers began monitoring the repair process with longitudinal fluorescence to determine if there would be an appreciable loss of stem cells in the in vivo samples, as compared to the static, in vitro, environments. They found that there was no measurable difference between the concentrations of stem cells in the various samples, despite the fact that the in vivo sample was part of a dynamic environmentwhich included enzymes and blood flowmaking it easier for the stem cells to migrate away from the target site. That means virtually all the stem cells stayed in place to complete their work in generating new bone tissue.

"Some types of tissue repair take more time to heal than do others," said Benoit. "What we needed was a way to control how long the hydrogels remained at the site."

Benoit and her team were able to manipulate the time it took for hydrogels to dissolve by modifying groups of atomscalled degradable groupswithin the polymer molecules. By introducing different degradable groups to the polymer chains, the researchers were able to alter how long it took for the hydrogels to degrade.

Benoit believes degradable hydrogels show promise in many research areas. For example, it may be possible to initiate tissue regeneration after heart attacks without having a patient undergo difficult, invasive surgery, but a great deal of additional research is required.


'/>"/>

Contact: Peter Iglinski
peter.iglinski@rochester.edu
585-273-4726
University of Rochester
Source:Eurekalert  

Related biology news :

1. Toward a better drug against malaria
2. New research provides better understanding of endometriosis
3. Building a better blood vessel
4. Engineering a better way to rebuild bone inside the body
5. Imaging scientists develop a better tool for tracking MS
6. New insights into premature ejaculation could lead to better diagnosis and treatment
7. Better science for better fisheries management
8. Making better medicines with a handful of chemical building blocks
9. Silly Putty material inspires better batteries
10. Understanding the 1918 flu pandemic can aid in better infectious disease response
11. Green-energy community projects need better government backing
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Better tissue healing with disappearing hydrogels
(Date:4/28/2016)... Sweden , April 28, 2016 First ... M (139.9), up 966% compared with the first quarter of 2015 ... profit totaled SEK 589.1 M (loss: 18.8) and the operating margin ... 7.12 (loss: 0.32) Cash flow from operations was SEK ... The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
(Date:4/15/2016)... -- A new partnership announced today will help life ... a fraction of the time it takes today, ... insurance policies to consumers without requiring inconvenient and ... rapid testing (A1C, Cotinine and HIV) and higi,s ... pulse, BMI, and activity data) available at local ...
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking ... Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity as ...
(Date:6/23/2016)... 23, 2016 On Wednesday, June 22, ... down 0.22%; the Dow Jones Industrial Average edged 0.27% lower ... 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the following ... Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing ...
(Date:6/23/2016)... , June 23, 2016 ... market research report to its pharmaceuticals section with ... product details and much more. Complete ... across 151 pages, profiling 15 companies and supported ... at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The ...
Breaking Biology Technology: