Navigation Links
Better protection for forging dies
Date:11/21/2012

Forging dies must withstand a lot. They must be hard so that their surface does not get too worn out and is able to last through great changes in temperature and handle the impactful blows of the forge. However, the harder a material is, the more brittle it becomes - and forging dies are less able to handle the stress from the impact. For this reason, the manufacturers had to find a compromise between hardness and strength. One of the possibilities is to surround a semi-hard, strong material with a hard layer. The problem is that the layer rests on the softer material and can be indented by blows, like the shell of an egg.

Researchers from the Fraunhofer Institute for Production Technology IPT in Aachen, Germany have now developed an alternative. "The forging dies we have been working on have a useful life that is up to twice as long," explains Kristian Arntz, head of department at the IPT. "We are using a working material that is less hard and able to handle the impact stress well. We melt the uppermost layer of the material with a laser and introduce a powder into the melt material that is used to chemically alter the characteristics of the material. We have therefore achieved a large degree of hardness in the upper millimeter." The advantage is that since the characteristics of the outer layer do not change abruptly (as is the case in a deposited layer), but increases in hardness gradually (this is also called a hardness gradient) we can circumvent the "egg shell effect". In addition, the particles act like sand paper and prevent the material from wearing off the die. Since the wear only occurs in certain spots of the die, the scientists are very targetedly altering only these surface areas. They are therefore further minimizing the effect the layer has on the impact resistance. Simulations help to calculate the areas that are particularly stressed and knowledge gained by experience is also applied.

To be able to work on the forging dies, the scientists and their colleagues at Alzmetall have developed a machine with which they are able to work on the free-form die inserts and forging dies. The scientists have also developed a software with ModuleWorks that ensures that the laser travels across the surface at a constant speed and that the gaps between the laser paths remain even otherwise tears would develop in the surface. "This isn't a problem if the surfaces are straight; however, we had to develop special algorithms for free-formed tools that keep the path distance and the speed constant even with complex geometries," said Arntz. The machine and the software are ready; the scientists have already manufactured initial tools and dies for the industry. They will introduce the technology at the Euromold trade fair (Hall 11, Booth C66) from November 27 - 30 in Frankfurt, Germany.

The scientists are planning, in a further step, to reduce expensive raw materials such as chromium, molybdenum and vanadium. To date, these materials are present in all forging dies. "We want to utilize the basic fundamentals of our technology so that we only have to alloy the reworked surface layer with these materials."


'/>"/>
Contact: Kristian Arntz
kristian.arntz@ipt.fraunhofer.de
49-241-890-4121
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. A better thought-controlled computer cursor
2. A better route to xylan
3. Barley genome could hold key to better beer
4. Charting the Biosimilar and Biobetter Development Pipeline
5. Computer simulations for multiscale systems can be faster, better, more reliable
6. Engineering a better hip implant
7. New gene could lead to better bug-resistant plants
8. Ancient, bottom-dwelling critter proves: Newer isnt always better
9. Early activation of immune response could lead to better vaccines
10. For mitochondria, bigger may not be better
11. Birds do better in agroforests than on farms
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Better protection for forging dies
(Date:2/7/2017)... --  MedNet Solutions , an innovative SaaS-based eClinical technology ... is pleased to announce that the latest release of ... and award winning eClinical solution, is now available for ... a proven Software-as-a-Service (SaaS) clinical research technology platform that ... delivers an entire suite of eClinical tools to support ...
(Date:2/3/2017)... , Feb. 3, 2017  Texas Biomedical Research Institute announced ... Larry Schlesinger as the Institute,s new President and ... effective May 31, 2017. He is currently the Chair of ... the Center for Microbial Interface Biology at Ohio State University. ... the new President and CEO of Texas Biomed," said Dr. ...
(Date:2/2/2017)... , Feb. 1, 2017  Central to ... and meaningful advances worldwide, The Japan Prize Foundation ... Prize, who have pushed the envelope in their ... and Communication. Three scientists are being recognized with ... achievements that not only contribute to the advancement ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... SAN JOSE, Calif. , Feb. 23, 2017 ... an exclusive license for two key immunotherapy technologies ... The first technology provides a method to monitor ... therapy such as PD-L1 and CTLA-4.  The second ... detect if a patient is likely to have ...
(Date:2/23/2017)... ... February 23, 2017 , ... Brain Sentinel, ... begin marketing the SPEAC® System, the Brain Sentinel® Seizure Monitoring and Alerting System. ... healthcare facilities during periods of rest. A lightweight, non-invasive monitor is placed on ...
(Date:2/23/2017)... NC (PRWEB) , ... February 23, 2017 , ... ... to announce a new partnership with Compass Research . GGI's mission is to ... a vaccine to a child in need in honor of each clinical trial volunteer. ...
(Date:2/23/2017)... ... February 22, 2017 , ... Seventy-one members of ... Fellows of the Society this year, the Fellows Committee has announced. The honor ... optics, photonics, and imaging as well as their service to the Society and ...
Breaking Biology Technology: