Navigation Links
Berkeley Lab-led project aims to produce liquid transportation fuel from methane
Date:1/16/2014

How's this for innovative: A Berkeley Lab-led team hopes to engineer a new enzyme that efficiently converts methane to liquid transportation fuel.

"There's a lot of methane available, and we want to develop a new way to harness it as an energy source for vehicles," says Christer Jansson, a biochemist in Berkeley Lab's Earth Sciences Division who heads the effort.

Methane is the main component of natural gas and biogas from wastewater treatments and landfills. Another source is "stranded natural gas," which is currently flared or vented at remote oil fields, and which represents an enormous unused energy resource.

But methane has disadvantages. It remains a gas at surface temperatures and pressure, which makes it problematic and costly to transport. Large portions of the known natural gas reserves are located in remote areas of the world. And methane is a potent greenhouse gas, with a global warming potential more than 20 times that of carbon dioxide.

Methane can be converted to liquid hydrocarbons by thermochemical processes. But these processes are both energy intensive and often non-selective.

So Jansson and colleagues are turning to biology. There are bacteria in nature that gobble up methane and convert it to chemicals that can be fashioned into fuel. These bacteria, called methanotrophs, have an enzyme that serves their needs just fine. Unfortunately, the enzyme doesn't produce chemicals with the efficiency needed to make transportation fuels.

Scientists are working to make this enzyme more efficient, but Jansson's team is taking a new approach. They're starting with a different enzyme that ordinarily takes in carbon dioxide. Its structure is relatively simple and well understood, making it an ideal platform to tinker with, which in this case means engineering the enzyme to consume methane instead of carbon dioxide and release a product that can feed into a pathway for fuel synthesis.

This new enzyme, a methylase, could be added to bacteria for production of different fuels such as butanol and biodiesel. In practice, these specially designed bacteria would be placed in a bioreactor. Simply add methaneand out comes liquid transportation fuel. Repeat the cycle over and over for more fuel.

That's the idea. Getting there will require a team of Berkeley Lab scientists and industrial partners.

John Tainer's and Steve Yannone's groups in Berkeley Lab's Life Sciences Division will explore how the enzyme can be tweaked so that it binds with methane. They'll use computational analysis to map the structural changes needed so that the enzyme has a shot at breaking methane's bonds and snaring the molecule. They'll also study the enzyme at Berkeley Lab's Advanced Light Source, where the SIBYLS synchrotron beamline combines X-ray scattering with X-ray diffraction capabilities. This will help the scientists determine the enzyme's functional 3-D structure.

In addition, Novici Biotech, a California-based industrial partner, will create tens of thousands of variants of the enzyme with its proprietary synthetic biology technology. Romy Chakraborty of Berkeley Lab's Earth Sciences Division and scientists from the U.S. Department of Energy's Joint BioEnergy Institute will assist in analyzing these variants to identify those with the best characteristics.

Ideally, each step will circle closer to a new enzyme that's very efficient at converting methane to an oxidized product.

"Once a functional methylase has been constructed, we need to engineer a new metabolic cycle that takes up methane and regenerates the co-substrate," says Jansson. "Just like the Calvin-Benson cycle, but with assimilation of methane instead of carbon dioxide."

"This will take some time," Jansson says. "But if we're successful, the methylase can be installed into various microorganisms such as E. coli, yeast, and cyanobacteria and used on a large scale to produce liquid fuel from methane in natural gas or other sources."


'/>"/>

Contact: Dan Krotz
dakrotz@lbl.gov
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert

Related biology news :

1. Berkeley Lab scientists generate electricity from viruses
2. Berkeley Lab scientists help define the healthy human microbiome
3. Waves of Berkeley Lab responders deploy omics to track Deepwater Horizon cleanup microbes
4. UC Berkeley chemists installing first carbon dioxide sensor network in Oakland
5. UC Berkeley survey shows college campuses can make good bird havens
6. Berkeley Lab scientists help develop promising therapy for Huntingtons disease
7. UC Berkeley, UCSF and Stanford join forces to help commercialize university innovations
8. Berkeley Lab researchers get a detailed look at a DNA repair protein in action
9. A project to research biological and chemical aspects of microalgae to fuel approach
10. Record-breaking grant: New research project to investigate the causes of mental disorders
11. EU project: Searching for exotics in the shrimp nets
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Apr. 11, 2017 Research and Markets has ... report to their offering. ... The global eye tracking market to grow at a CAGR of ... Eye Tracking Market 2017-2021, has been prepared based on an in-depth ... market landscape and its growth prospects over the coming years. The ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... launched Rosalind™, the first-ever genomics analysis platform specifically designed for life science ... in honor of pioneering researcher Rosalind Franklin, who made a major contribution ...
(Date:10/11/2017)... YORBA LINDA, CA (PRWEB) , ... October 11, ... ... adapted to upregulate any gene in its endogenous context, enabling overexpression experiments and ... activation (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function ...
(Date:10/11/2017)... ... 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th ... in San Francisco, CA. The Summit brings together current and former FDA office bearers, ... and government officials from around the world to address key issues in device compliance, ...
(Date:10/11/2017)... 2017  VMS BioMarketing, a leading provider of patient support ... Nurse Educator (CNE) network, which will launch this week. The ... health care professionals to enhance the patient care experience by ... other health care professionals to help women who have been ... ...
Breaking Biology Technology: