Navigation Links
Beating bacteria on Earth -- and in space

By sheer strength of numbers, bacteria are by far the most successful life form on Earth. As we've learned over the past several decades of human spaceflight, they don't do too badly in microgravity either. For evidence, just look back on the astronauts and cosmonauts who were stricken with infections during their flights. At home, we have long-established and usually effective antibiotic treatments against most harmful bacteria. But previous studies have shown that in space, bacteria can survive and thrive in what would be fatal drug concentrations for them back on Earth. How is that possible?

That's a question of vital concern not just today, with International Space Station crews living together in confined spaces for months at a time, but for the future astronauts who will embark on long-duration missions to Mars and beyond. For those journeys, a quick emergency return to Earth won't be possible. Searching for the answer also helps researchers to understand the inner workings of bacteria as they seek to develop improved treatments for patients on the ground and in space.

The Antibiotic Effectiveness in Space (AES-1) investigation, scheduled to launch in January aboard the first contracted Orbital resupply flight to the space station, is a systematic attempt to probe the reasons for antibiotic resistance in space. "Is the mechanism that's allowing this to occur some form of adaptation or drug resistance acquisition within the cell, or is it more of an indirect function of the biophysical environment, the changes due to microgravity and mass transport?" asked AES-1 principal investigator David Klaus, Ph.D., of BioServe Space Technologies at the University of Colorado in Boulder.

The AES-1 investigation consists of 32 separate combinations of E. coli bacteria and various concentrations of a common antibiotic drug, either Gentamicin and Colistin. That experimental set is duplicated four times to provide a total of 128 separate data points for analysis. Upon return, researchers will check the samples for bacterial population growth. The samples will also be subjected to gene expression examinations by BioServe's study partner, HudsonAlpha Institute for Biotechnology in Huntsville, Ala.

"The idea with this first round is to determine whether the cells actually grow in what should be an inhibitory level of drug, and if so, are there any correlations with specific changes in the gene expression?" Klaus explained. Part of the AES-1 package will return to Earth with the SpaceX-3 mission in February 2014, with the remainder coming back on SpaceX-4 in the summer.

While AES-1 won't be too labor-intensive in flight, it does require a certain degree of participation by the station crew. "A few days into the mission, they'll go in and activate the 16 different group activation packs, and then periodically per the timeline they'll do a termination step on them," said Klaus. "We've flown various forms of our payload, sometimes essentially completely autonomous and sometimes with direct crew interaction."

BioServe is familiar with this type of design flexibility, with experience on 43 prior missions since 1991, including sounding rockets, Mir, space shuttle and space station flights. "You essentially begin to trade off experimental volume for automation. The more automation you have, the less [experiment volume] you can generally accommodate because of the need for the electronics and supporting systems," said Klaus.

Although Klaus and the research team plan to fly other bacterial species on future AES investigations, they decided E. coli was the best choice for this first flight. "We would ultimately like to fly things that are more clinically relevant, but for this first round, because they're so well characterized and we in BioServe have flown a lot of previous work using E. coli, it made sense to stick with this primary line we've been using for a number of years," Klaus noted. "We're going to hopefully answer the question fairly definitively in this case of whether they really are able to grow in these normally lethal levels of drugs. That's first and foremost, to repeat what's been seen in the past, but do so in a more systematic way and with a larger dataset."

Perhaps the most fascinating question to be addressed by AES-1 will be the role of the microgravity environment in potentially promoting antibiotic resistance, because bacteria are almost beyond gravity's grasp. "They're right on the threshold of being theoretically influenced by gravity directly," Klaus explained. "They're so small that Brownian motion [the random motion of tiny particles struck by atoms and molecules] is almost, but not quite dominant. If they were much bigger, gravity quickly becomes a dominant factor, and if they were much smaller, gravity becomes effectively lost in the noise. So these have made interesting models to work with. A virus is a little too small, but bacteria are right in a gray zone of neither being convective nor diffusive dominated."

Already a major problem on Earth, increasingly resistant bacterial strains can be an even greater threat for space travelers, because spaceflight can also compromise the astronaut's immune system. Couple that with bacteria's ability to grow better and resist antibiotics in space, and as Klaus noted, "that's not the right direction you want to have all those variables stacking up on you."

The hope is that a better understanding of how bacteria fight off drugs can lead to better ways to counter that resistance not only in space but back on Earth. The goal, Klaus said, is to "use the knowledge gained from observing and characterizing these interactions in the absence of gravity primarily for terrestrial benefit and secondarily for long-term astronaut crew health protection."

We will always be outnumbered by harmful species of bacteria, but we can still prevail by maintaining and improving our arsenal of antibiotic weapons. The AES-1 investigation promises to be an important step in that quest, whether we encounter our bacterial foes on Earth, in orbit, or on future distant space voyages.


Contact: Laura Niles
NASA/Johnson Space Center

Related biology news :

1. Beating superbugs at their own game
2. Beating blindness with vegetable oil
3. Embryonic blood vessels that make blood stem cells can also make beating heart muscles
4. Beating famine: Sustainable food security through land regeneration in a changing climate
5. Genetically identical bacteria can behave in radically different ways
6. TB bacteria mask their identity to intrude into deeper regions of lungs
7. Bacteria to aid sutainable sugarcane production
8. Epidemic of Escherichia coli infections traced to 1 strain of bacteria
9. MRSA strain gained dominance with help from skin bacteria
10. Blue light phototherapy kills antibiotic-resistant bacteria, according to new studies
11. Whooping cough vaccine antigen disappearing from bacteria in US
Post Your Comments:
Related Image:
Beating bacteria on Earth -- and in space
(Date:11/12/2015)... 2015  Arxspan has entered into an agreement ... for use of its ArxLab cloud-based suite of ... partnership will support the institute,s efforts to electronically ... information internally and with external collaborators. The ArxLab ... the Institute,s electronic laboratory notebook, compound and assay ...
(Date:11/11/2015)... , Nov. 11, 2015   MedNet Solutions , ... spectrum of clinical research, is pleased to announce that it ... Clinical Trials (PCT) event, to be held November 17-19 ... able to view live demonstrations of iMedNet ... learn how iMedNet has been able to deliver ...
(Date:11/10/2015)... 2015 About signature verification ... to identify and verify the identity of an ... the secure and accurate method of authentication and ... individual because each individual,s signature is highly unique. ... dynamic signature of an individual is compared and ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... SAN DIEGO , Nov. 25, 2015 ... that management will participate in a fireside chat discussion ... New York . The discussion is ... Time. .  A replay will ... Contact:  Media Contact:McDavid Stilwell  , Julie NormartVP, Corporate ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and ... early in their initial angel funding process. Now, they are paying it forward ... make early stage investments in the microbiome space. In this, they join ...
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf ... the 2016 USGA Green Section Award. Presented annually since 1961, the USGA Green Section ... her work with turfgrass. , Clarke, of Iselin, N.J., is an extension ...
(Date:11/24/2015)... 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will ... New York on Wednesday, December 2 at 9:30 a.m. ... and CEO, will provide a corporate overview. th ... at 1:00 p.m. ET/10:00 a.m. PT . Jim Mazzola ... a corporate overview. --> th Annual Oppenheimer Healthcare ...
Breaking Biology Technology: