Navigation Links
Battery research: Bionics reduces filling time
Date:10/17/2011

This release is available in German.

The latest development by engineers of KIT is inspired by nature. To fill the porous electrodes of lithium-ion batteries more rapidly with liquid electrolyte, they use a physico-chemical effect that also provides for transport in trees. The new process increases the throughput of battery production and reduces investment costs. These and other innovations will be presented by KIT at the eCarTec International Electromobility Fair in Munich (hall A5, stand 323) from October 18 to 20.

The electrodes inside modern batteries are as porous as a sponge. Unlike household sponges, however, pore size is in the micrometer range. As a result, the electrode has a very large surface area and provides much space for the chemical processes during electric charge and discharge. This is necessary for developing batteries for electric vehicles that can cover large distances and be recharged rapidly. "But the pores have to be filled completely with the electro-lyte in order to work optimally," explains Dr. Wilhelm Pfleging from KIT. The liquid electrolyte is the transport medium, in which the charged ions can flow between anode and cathode in the battery. "Without electrolyte, there is no charge equalization inside and no current flow outside." The materials used in electrodes and the elec-trolyte of conventional high-energy batteries for automotive indus-try, however, provide for a bad wetting of the electrode surface by the liquid electrolyte only.

Consequently, much time and expenditure in battery production have been spent so far for making the electrolyte move into the smallest pore, if possible, and for maximizing battery capacity. The liquid is forced to enter the material by expensive and time-consuming storage processes at vacuum or elevated temperatures. "Our new process allows to reduce this time from several hours to a few minutes," confirms Pfleging. To achieve this amazing effect, he relies on nature. By a mechanico-chemical technology, the elec-trodes are modified such that the electrolyte is sucked into the bat-tery as water is sucked into high trees. As a result, the electrolyte spreads very rapidly over the complete material and performance data of batteries based on this principle are much better.

"This novel electrode modification drastically reduces the technical expenditure and production times needed for filling lithium-ion cells with electrolyte," acknowledges Andreas Gutsch. Under the Compe-tence E project, he coordinates the activities of more than 250 scientists at KIT to utilize the large innovation potential of a number of partial improvements and to further develop the entire system. "Now, an interdisciplinary team of physicists, chemists, materials researchers, and process engineers has succeeded in making an important step towards low-cost batteries." A patent has already been applied for. The process is planned to be integrated in the production lines of battery manufacturers as quickly as possible. "We are pushing licensing to close the innovation gap between development and industry as rapidly as possible. Several renowned companies have already asked for license contracts. At KIT, we are conducting excellent research for application, not for the drawer."


'/>"/>

Contact: Monika Landgraf
presse@kit.edu
49-721-608-47414
Helmholtz Association of German Research Centres
Source:Eurekalert  

Related biology news :

1. Lithium-sulfur battery research receives $5 million from DOE
2. Livermore researchers develop battery-less chemical detector
3. BASF and Karlsruhe Institute of Technology develop tomorrows battery materials
4. WSU researchers use super-high pressures to create super battery
5. Synthetic cells shed biological insights while delivering battery power
6. Troublesome green algae serve as coating substrate in record-setting battery
7. Hydrogen tank lighter than battery
8. New research: Are global honey bee declines caused by diesel pollution?
9. New research: Milk-drinking teens reap health benefits through adulthood
10. Princeton research: In the early life of an embryo, a monster lurks
11. MS research: Myelin influences how brain cells send signals
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Battery research: Bionics reduces filling time
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... 2017  On April 6-7, 2017, Sequencing.com will host ... hackathon at Microsoft,s headquarters in Redmond, ... on developing health and wellness apps that provide a ... Genome is the first hackathon for personal genomics ... companies in the genomics, tech and health industries are ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces ... addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s US Market ... hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical applications. BioMedGPS ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit ... 7th and 8th June 2018 in San Francisco, CA. The Summit brings together current ... several distinguished CEOs, board directors and government officials from around the world to address ...
Breaking Biology Technology: