Navigation Links
'Barren' seafloor teeming with microbial life
Date:5/28/2008

Once considered a barren plain with the odd hydrothermal vent, the seafloor appears to be teeming with microbial life, according to a paper being published May 29 in Nature.

A 60,000 kilometer seam of basalt is exposed along the mid-ocean ridge spreading system, representing potentially the largest surface area for microbes to colonize on Earth, said USC geomicrobiologist Katrina Edwards, the studys corresponding author.

While seafloor microbes have been detected before, this is the first time they have been quantified. Using genetic analysis, Edwards and colleagues found thousands of times more bacteria on the seafloor than in the water above.

Surprised by the abundance, the scientists tested another Pacific site and arrived at consistent results. This makes it likely that rich microbial life extends across the ocean floor, Edwards said.

The scientists also found higher microbial diversity on the rocks compared with other vibrant systems, such as those found at hydrothermal vents.

Even compared with the microbial diversity of farm soilviewed by many as the richestdiversity on the basalt is statistically equivalent.

These scientists used modern molecular methods to quantify the diversity of microbes in remote deep-sea environments, said David L. Garrison, director of the National Science Foundations biological oceanography program.

As a result, we now know that there are many more such microbes than anyone had guessed, he added.

These findings raise the question of where these bacteria find their energy.

We scratched our heads about what was supporting this high level of growth when the organic carbon content is pretty darn low, Edwards recalled.

With evidence that the oceanic crust supports more bacteria compared with overlying water, the scientists hypothesized that reactions with the rocks themselves might offer fuel for life.

Back in the lab, they calculated how much biomass could theoretically be supported by chemical reactions with the basalt. They then compared this figure to the actual biomass measured. It was completely consistent, Edwards said.

This lends support to the idea that bacteria survive on energy from the crust, a process that could affect our knowledge about the deep-sea carbon cycle and even evolution.

For example, many scientists believe that shallow water, not deep water, cradled the planets first life. They reason that the dark carbon-poor depths appear to offer little energy, and rich environments like hydrothermal vents are relatively sparse.

But the newfound abundance of seafloor microbes makes it theoretically possible that early life thrivedand maybe even beganon the seafloor.

Some might even favor the deep ocean for the emergence of life since it was a bastion of stability compared with the surface, which was constantly being blasted by comets and other objects, Edwards suggested.

Still, current knowledge of the deep biosphere can fit on the head of a pin, Edwards said. Most seafloor bacteria uncovered in this study show little relation to those cultivated in labs, which makes experimentation difficult.

Rather than bringing bacteria to the lab, however, Edwards plans to bring the lab to bacteriawith a microbial observatory 15,000 feet below sea level.

Thanks to a $3.9-million grant awarded in March by the Gordon and Betty Moore Foundation, Edwards and over 30 colleagues will continue studying seafloor bacteria, but will also study their subseafloor cousins that cycle through the porous rock.

The first expedition of its kind, the drilling operation will penetrate 100 meters of sediments and 500 meters of bedrock.

Besides experiments aimed at learning how precisely these bacteria alter rock, the scientists will measure the diversity, abundance and relatedness of microbes at different depths.

This will shed light on whether the bacteria evolved from ancestors that floated down from above or from some as yet unknown source deep in the crust.

The Nature study provides a crucial base of comparison between the seafloor and subseafloor microbes, both completely unknown until just recently.

The decade-long undertaking will further bridge the earth and life sciences, a key goal in the emerging field of geobiology, described by Edwards as the co-evolution of Earth and life.

The deep biosphere is uniquely suited for a geobiological approach, Edwards said, since a proper understanding requires genomics, analysis of microbe-rock chemical interactions and a timescale in the millions of years.

Edwards joined USC two years ago as part of its cluster hire of scientists with multidisciplinary interests related to geobiology. With its concentration of faculty in the field, Southern California and USC in particular are regarded as hubs for the geobiology research community.

USC recently hosted the 5th Annual Geobiology Symposium, co-organized by USC post-doctoral student Beth Orcutt, the second author of the Nature paper.

In addition, the USC Wrigley Institute for Environmental Studies runs a summer geobiology course on Catalina Island that brings together top students and faculty.

Edwards believes that most people just dont realize how much life thrives in the watery depths.

If we can really nail down whats going on, then there are significant implications, she said. It is my hope that people turn their heads and notice that theres life down there.


'/>"/>

Contact: Terah DeJong
tdejong@usc.edu
213-740-8606
University of Southern California
Source:Eurekalert

Related biology news :

1. Scientists find bacteria thriving on a feast of seafloor rock
2. Microbial stowaways: Are ships spreading disease?
3. Undergraduates develop dirt-powered microbial fuel cells to light Africa
4. Expanded histology methods book covers processing of animal, plant, and microbial tissues
5. Climate changing gas from some surprising microbial liaisons
6. Genes selective signature aids detection of natural selection in microbial evolution
7. Bioinformatics technology developed at Argonne provides new insight into microbial activities
8. Latest Integrated Microbial Genomes data management system update release
9. Microbial fuel cells turn on the juice
10. Microbial biofilms evoke Jekyll & Hyde effects
11. Hydrothermal vents: Hot spots of microbial diversity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/25/2016)... SEATTLE , Jan. 25, 2016  Glencoe Software, ... biotech, pharma and publication industries, will provide the data ... Phenotypic Screening Centre (NPSC). ... Phenotypic analysis ... even whole organisms, allowing comparisons between states such as ...
(Date:1/22/2016)... , Jan. 22, 2016 ... the addition of the "Global Biometrics ... to their offering. --> ... the "Global Biometrics Market in Retail ... --> Research and Markets ...
(Date:1/20/2016)... , Jan. 20, 2016 A market that ... directly benefit from the explosion in genomics knowledge. Learn ... Sound Research. A range of dynamic trends are pushing ... - personalized medicine - pharmacogenomics - pathogen evolution - ... large markets - greater understanding of the role of ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... Non-profit Consortium Aims to Generate Genomic ... Research and Discovery --> --> ... plan to sequence 100,000 individuals. It is intended to initially ... 7 of North and East Asian countries. ... project will focus on creating phased reference genomes for all ...
(Date:2/11/2016)... Germany and GERMANTOWN, ... QGEN ; Frankfurt Prime Standard: QIA) today announced ... RNA Panels for gene expression profiling, expanding QIAGEN,s portfolio ... The panels enable researchers to select from over 20,000 ... and discover interactions between genes, cellular phenotypes and disease ...
(Date:2/11/2016)... , Feb. 11, 2016  Wellcentive today ... Portland, Oregon -based community care ... provide population health analytics, quality reporting and care ... FamilyCare strengthen its team of quality managers, analysts ... to the provider groups serving FamilyCare members. ...
(Date:2/11/2016)... Florida , February 11, 2016 ... PositiveID Corporation ("PositiveID" or "Company") (OTCQB: PSID), a ... announced today that its Thermomedics subsidiary, which markets ... on its growth plan in January 2016, including ... distributors, increasing sequential monthly sales growth, and establishing ...
Breaking Biology Technology: