Navigation Links
Banded rocks reveal early Earth conditions, changes
Date:10/11/2009

MADISON The strikingly banded rocks scattered across the upper Midwest and elsewhere throughout the world are actually ambassadors from the past, offering clues to the environment of the early Earth more than 2 billion years ago.

Called banded iron formations or BIFs, these ancient rocks formed between 3.8 and 1.7 billion years ago at what was then the bottom of the ocean. The stripes represent alternating layers of silica-rich chert and iron-rich minerals like hematite and magnetite.

First mined as a major iron source for modern industrialization, BIFs are also a rich source of information about the geochemical conditions that existed on Earth when the rocks were made. However, interpreting their clues requires understanding how the bands formed, a topic that has been controversial for decades, says Huifang Xu, a geology professor at the University of Wisconsin-Madison.

A study appearing today (Oct. 11) as an advance online publication in Nature Geoscience offers a new picture of how these colorful bands developed and what they reveal about the composition of the early ocean floor, seawater, and atmosphere during the evolution of the Earth.

Previous hypotheses about band formation involved seasonal fluctuations, temperature shifts, or periodic blooms of microorganisms, all of which left many open questions about how BIFs dominated the global marine landscape for two billion years and why they abruptly disappeared 1.7 billion years ago.

With Yifeng Wang of Sandia National Laboratories, Enrique Merino of Indiana University and UW-Madison postdoc Hiromi Konishi, Xu developed a BIF formation model that offers a more complete picture of the environment at the time, including interactions between rocks, water, and air.

"They are all connected," Xu explains. "The lithosphere affects the hydrosphere, the hydrosphere affects the atmosphere, and all those eventually affect the biosphere on the early Earth."

Their model shows how BIFs could have formed when hydrothermal fluids, from interactions between seawater and hot oceanic crust from deep in the Earth's mantle, mixed with surface seawater. This mixing triggered the oscillating production of iron- and silica-rich minerals, which were deposited in layers on the seafloor.

They used a series of thermodynamic calculations to determine that the source material for BIFs must have come from oceanic rocks with a very low aluminum content, unlike modern oceanic basalts that contain high levels of aluminum.

"The modern-day ocean floor is basalt, common black basalt like the Hawaiian islands. But during that time, there was also a strange kind of rock called komatiites," says Xu. "When ocean water reacts with that kind of rock, it can produce about equal amounts of iron and silica" a composition ideally suited to making BIFs.

Such a mixture can create distinct alternating layers which range in thickness from 10 micrometers to about 1 centimeter due to a constantly shifting state that, like a competition between two well-matched players, resists resolving to a single outcome and instead see-saws between two extremes.

BIFs dominated the global oceans 3.8 to 1.7 billion years ago, a time period known to geologists as the Archaean-Early Proterozoic, then abruptly disappeared from the geologic record. Their absence in more recent rocks indicates that the geochemical conditions changed around 1.7 billion years ago, Xu says.

This change likely had wide-ranging effects on the physical and biological composition of the Earth. For example, the end of BIF deposition would have starved iron-dependent bacteria and shifted in favor of microbes with sulfur-based metabolisms. In addition, chemical and pH changes in the ocean and rising atmospheric oxygen may have allowed the emergence and spread of oxygen-dependent organisms.

The new study was partly funded by the NASA Astrobiology Institute, and Xu hopes to look for biosignatures trapped in the rock bands for additional clues to the changes that occurred 1.7 billion years ago and what may have triggered them.


'/>"/>

Contact: Huifang Xu
hfxu@geology.wisc.edu
608-265-5887
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Deep-sea rocks point to early oxygen on Earth
2. Geologists map rocks to soak CO2 from air
3. Hot springs microbes hold key to dating sedimentary rocks, researchers say
4. UT Knoxville and ORNL researchers reveal key to how bacteria clear mercury pollution
5. Researchers go underground to reveal 850 new species
6. Mechanism related to the onset of various genetic diseases revealed
7. Evolution coup: Study reveals how plants protect their genes
8. Genomes reveal bacterial lifestyles: Research
9. World-first swine-flu vaccine trial reveals one dose provides strong immune response
10. Think zinc: Molecular sensor could reveal zincs role in diseases
11. The nutritional value of Andalusian lupines is revealed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... -- Perimeter Surveillance & Detection Systems, Biometrics ... Support & Other Service  The latest report ... analysis of the global Border Security market . ... $17.98 billion in 2016. Now: In November ... software and hardware technologies for advanced video surveillance. ...
(Date:5/12/2016)... WearablesResearch.com , a brand of Troubadour Research & ... Q1 wave of its quarterly wearables survey. A particular ... a program where they would receive discounts for sharing ... "We were surprised to see that so many ... CEO of Troubadour Research, "primarily because there are segments ...
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the ... major shareholders, Clean Technology Fund I, LP and Clean ... based venture capital funds which together hold approximately ... fully diluted, as converted basis), that they have entered ... equity holdings in Biorem to TUS Holdings Co. Ltd. ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... June 24, 2016  Regular discussions on a range of ... between the two entities said Poloz. Speaking at ... Ottawa , he pointed to the country,s inflation target, ... government. "In certain ... institutions have common economic goals, why not sit down and ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
Breaking Biology Technology: