Navigation Links
Banded rocks reveal early Earth conditions, changes
Date:10/11/2009

MADISON The strikingly banded rocks scattered across the upper Midwest and elsewhere throughout the world are actually ambassadors from the past, offering clues to the environment of the early Earth more than 2 billion years ago.

Called banded iron formations or BIFs, these ancient rocks formed between 3.8 and 1.7 billion years ago at what was then the bottom of the ocean. The stripes represent alternating layers of silica-rich chert and iron-rich minerals like hematite and magnetite.

First mined as a major iron source for modern industrialization, BIFs are also a rich source of information about the geochemical conditions that existed on Earth when the rocks were made. However, interpreting their clues requires understanding how the bands formed, a topic that has been controversial for decades, says Huifang Xu, a geology professor at the University of Wisconsin-Madison.

A study appearing today (Oct. 11) as an advance online publication in Nature Geoscience offers a new picture of how these colorful bands developed and what they reveal about the composition of the early ocean floor, seawater, and atmosphere during the evolution of the Earth.

Previous hypotheses about band formation involved seasonal fluctuations, temperature shifts, or periodic blooms of microorganisms, all of which left many open questions about how BIFs dominated the global marine landscape for two billion years and why they abruptly disappeared 1.7 billion years ago.

With Yifeng Wang of Sandia National Laboratories, Enrique Merino of Indiana University and UW-Madison postdoc Hiromi Konishi, Xu developed a BIF formation model that offers a more complete picture of the environment at the time, including interactions between rocks, water, and air.

"They are all connected," Xu explains. "The lithosphere affects the hydrosphere, the hydrosphere affects the atmosphere, and all those eventually affect the biosphere on the early Earth."

Their model shows how BIFs could have formed when hydrothermal fluids, from interactions between seawater and hot oceanic crust from deep in the Earth's mantle, mixed with surface seawater. This mixing triggered the oscillating production of iron- and silica-rich minerals, which were deposited in layers on the seafloor.

They used a series of thermodynamic calculations to determine that the source material for BIFs must have come from oceanic rocks with a very low aluminum content, unlike modern oceanic basalts that contain high levels of aluminum.

"The modern-day ocean floor is basalt, common black basalt like the Hawaiian islands. But during that time, there was also a strange kind of rock called komatiites," says Xu. "When ocean water reacts with that kind of rock, it can produce about equal amounts of iron and silica" a composition ideally suited to making BIFs.

Such a mixture can create distinct alternating layers which range in thickness from 10 micrometers to about 1 centimeter due to a constantly shifting state that, like a competition between two well-matched players, resists resolving to a single outcome and instead see-saws between two extremes.

BIFs dominated the global oceans 3.8 to 1.7 billion years ago, a time period known to geologists as the Archaean-Early Proterozoic, then abruptly disappeared from the geologic record. Their absence in more recent rocks indicates that the geochemical conditions changed around 1.7 billion years ago, Xu says.

This change likely had wide-ranging effects on the physical and biological composition of the Earth. For example, the end of BIF deposition would have starved iron-dependent bacteria and shifted in favor of microbes with sulfur-based metabolisms. In addition, chemical and pH changes in the ocean and rising atmospheric oxygen may have allowed the emergence and spread of oxygen-dependent organisms.

The new study was partly funded by the NASA Astrobiology Institute, and Xu hopes to look for biosignatures trapped in the rock bands for additional clues to the changes that occurred 1.7 billion years ago and what may have triggered them.


'/>"/>

Contact: Huifang Xu
hfxu@geology.wisc.edu
608-265-5887
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Deep-sea rocks point to early oxygen on Earth
2. Geologists map rocks to soak CO2 from air
3. Hot springs microbes hold key to dating sedimentary rocks, researchers say
4. UT Knoxville and ORNL researchers reveal key to how bacteria clear mercury pollution
5. Researchers go underground to reveal 850 new species
6. Mechanism related to the onset of various genetic diseases revealed
7. Evolution coup: Study reveals how plants protect their genes
8. Genomes reveal bacterial lifestyles: Research
9. World-first swine-flu vaccine trial reveals one dose provides strong immune response
10. Think zinc: Molecular sensor could reveal zincs role in diseases
11. The nutritional value of Andalusian lupines is revealed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2016)... , Feb. 2, 2016  Based on its ... & Sullivan recognizes US-based Intelligent Retinal Imaging Systems ... Sullivan Award for New Product Innovation. IRIS, a ... North America , is poised to ... growing diabetic retinopathy market. The IRIS technology presents ...
(Date:1/27/2016)...  Rite Track, Inc. a leading semiconductor equipment and ... Ohio announced today the acquisition of PLUS LLC. ... Austin, Texas , will significantly bolster ... installations and technical support offerings for TEL Track Systems. ... "PLUS has provided world class service including refurbishment, enhancements ...
(Date:1/21/2016)... 21, 2016 --> ... market research report "Emotion Detection and Recognition Market by Technology ... (Facial Expression, Voice Recognition and Others), Services, Application ... to 2020", published by MarketsandMarkets, the global Emotion ... USD 22.65 Billion by 2020, at a CAGR ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... NEW YORK , February 4, 2016 ... (OTCQB: QBIO), a biotechnology acceleration company is pleased to provide ... --> --> Over the last 3 months ... note and securities purchase agreements exceeding $1,000,000. As a result, ... under our Mannin Research Inc. license agreement and expect that ...
(Date:2/4/2016)... England , February 4, 2016 ... Bioscience Laboratories (ABL), Inc. --> Strasbourg, France ... Inc. --> PharmaVentures is pleased to announce that ... of its biopharmaceutical manufacturing unit in Strasbourg, France ... Inc. --> --> Transgene ...
(Date:2/3/2016)... , Feb. 3, 2016 Ascendis Pharma ... company that applies its innovative TransCon technology to address ... at an upcoming investor conference.Event:2016 Leerink Partners Global Healthcare ... Date:  , Wednesday, February 10, 2016 Time:  , ... www.ascendispharma.com . --> An audio webcast of ...
(Date:2/3/2016)... ... 03, 2016 , ... StarNet Communications Corp, ( http://www.starnet.com/ ) ... addition of a powerful “Session Preview” feature to its FastX remote Linux visualization ... remote Linux desktop or other applications (sessions) they have running on a remote ...
Breaking Biology Technology: