Navigation Links
Bad decisions arise from faulty information, not faulty brain circuits
Date:4/15/2013

AUDIO: Learn about research on decision-making in this podcast with Carlos Brody, an associate professor of molecular biology affiliated with the Princeton Neuroscience Institute and a Howard Hughes Medical Institute Investigator....

Click here for more information.

Making decisions involves a gradual accumulation of facts that support one choice or another. A person choosing a college might weigh factors such as course selection, institutional reputation and the quality of future job prospects.

But if the wrong choice is made, Princeton University researchers have found that it might be the information rather than the brain's decision-making process that is to blame. The researchers report in the journal Science that erroneous decisions tend to arise from errors, or "noise," in the information coming into the brain rather than errors in how the brain accumulates information.

These findings address a fundamental question among neuroscientists about whether bad decisions result from noise in the external information or sensory input or because the brain made mistakes when tallying that information. In the example of choosing a college, the question might be whether a person made a poor choice because of misleading or confusing course descriptions, or because the brain failed to remember which college had the best ratings.

Previous measurements of brain neurons have indicated that brain functions are inherently noisy. The Princeton research, however, separated sensory inputs from the internal mental process to show that the former can be noisy while the latter is remarkably reliable, said senior investigator Carlos Brody, a Princeton associate professor of molecular biology and the Princeton Neuroscience Institute (PNI), and a Howard Hughes Medical Institute Investigator.

"To our great surprise, the internal mental process was perfectly noiseless. All of the imperfections came from noise in the sensory processes," Brody said. Brody worked with first author Bingni Brunton, now a postdoctoral research associate in the departments of biology and applied mathematics at the University of Washington; and Matthew Botvinick, a Princeton associate professor of psychology and PNI.

The research subjects four college-age volunteers and 19 laboratory rats listened to streams of randomly timed clicks coming into both the left ear and the right ear. After listening to a stream, the subjects had to choose the side from which more clicks originated. The rats had been trained to turn their noses in the direction from which more clicks originated.

The test subjects mostly chose the correct side but occasionally made errors. By comparing various patterns of clicks with the volunteers' responses, researchers found that all of the errors arose when two clicks overlapped, and not from any observable noise in the brain system that tallied the clicks. This was true in experiment after experiment utilizing different click patterns, in humans and rats.

The researchers used the timing of the clicks and the decision-making behavior of the test subjects to create computer models that can be used to indicate what happens in the brain during decision-making. The models provide a clear window into the brain during the "mulling over" period of decision-making, the time when a person is accumulating information but has yet to choose, Brody said.

"Before we conducted this study, we did not have a way of looking at this process without inserting electrodes into the brain," Brody said. "Now thanks to our model, we have an estimation of what is going on at each moment in time during the formation of the decision."

The study suggests that information represented and processed in the brain's neurons must be robust to noise, Brody said. "In other words, the 'neural code' may have a mechanism for inherent error correction," he said.

"The new work from the Brody lab is important for a few reasons," said Anne Churchland, an assistant professor of biological sciences at Cold Spring Harbor Laboratory who studies decision-making and was not involved in the study. "First, the work was very innovative because the researchers were able to study carefully controlled decision-making behavior in rodents. This is surprising in that one might have guessed rodents were incapable of producing stable, reliable decisions that are based on complex sensory stimuli.

"This work exposed some unexpected features of why animals, including humans, sometimes make incorrect decisions," Churchland said. "Specifically, the researchers found that errors are mostly driven by the inability to accurately encode sensory information. Alternative possibilities, which the authors ruled out, included noise associated with holding the stimulus in mind, or memory noise, and noise associated with a bias toward one alternative or the other."


'/>"/>

Contact: Morgan Kelly
mgnkelly@princeton.edu
609-258-5729
Princeton University
Source:Eurekalert

Related biology news :

1. Deciphering bacterial doomsday decisions
2. Study offers new tool for incorporating water impacts into policy decisions
3. Lariats: How RNA splicing decisions are made
4. New evidence that many genes of small effect influence economic decisions and political attitudes
5. Model forecasts long-term impacts of forest land-use decisions
6. Rats recall past to make daily decisions
7. Increasing water scarcity in Californias Bay-Delta will necessitate trade-offs; hard decisions needed to balance various environmental risks
8. UCLA life scientists unlock mystery of how handedness arises
9. Gene sequencing project finds new mutations to blame for a majority of brain tumor subtype
10. Ordinary skin cells morphed into functional brain cells
11. CSHL neuroscientists show jumping genes may contribute to aging-related brain defects
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
(Date:1/20/2016)... , Jan. 20, 2016  Synaptics Incorporated ... human interface solutions, today announced sampling of S1423, ... for wearables and small screen applications including smartwatches, ... printers. Supporting round and rectangular shapes, as well ... excellent performance with moisture on screen, while wearing ...
(Date:1/11/2016)... , Jan. 11, 2016 Synaptics Incorporated (NASDAQ: ... solutions, today announced that its ClearPad ® TouchView ... products won two separate categories in the 8 th ... and Best Technology Breakthrough. The Synaptics ® TDDI ... simplified supply chain, thinner devices, brighter displays and borderless ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... Germany and GERMANTOWN, Maryland ... QGEN ; Frankfurt Prime Standard: QIA) today announced the ... Panels for gene expression profiling, expanding QIAGEN,s portfolio of ... panels enable researchers to select from over 20,000 human ... discover interactions between genes, cellular phenotypes and disease processes. ...
(Date:2/11/2016)...  Dovetail Genomics™ LLC today announced that it has ... planned metagenomic genome assembly service. Richard Green , ... method in a talk on Friday, February 12 at ... in Orlando, Fla. ... difficult. Using its proprietary Chicago ™ ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global Stem Cells Group, ... Quito, Ecuador. The new facility will provide advanced protocols and state-of-the-art techniques in ... world. , The new GSCG clinic is headed by four prominent Ecuadorian ...
(Date:2/10/2016)... , Feb.10, 2016 ASAE is introducing ... Association Management Companies (AMC) the option of joining or ... annual fee determined by staff size, every employee in ... join ASAE and reap all available member benefits.   ... "Our new organizational membership options will allow organizations of ...
Breaking Biology Technology: