Navigation Links
Bacterium helps formation of gold
Date:10/7/2009

Australian scientists have found that the bacterium Cupriavidus metallidurans catalyses the biomineralisation of gold by transforming toxic gold compounds to their metallic form using active cellular mechanism.

Researchers reported the presence of bacteria on gold surfaces but have never clearly elucidated their role. Now, an international team of scientists has found that there may be a biological reason for the presence of these bacteria on gold grain surfaces. "A number of years ago we discovered that the metal-resistant bacterium Cupriavidus metallidurans occurred on gold grains from two sites in Australia. The sites are 3500 km apart, in southern New South Wales and northern Queensland, so when we found the same organism on grains from both sites we thought we were onto something. It made us wonder why these organisms live in this particular environment. The results of this study point to their involvement in the active detoxification of gold complexes leading to formation of gold biominerals", explains Frank Reith, leader of the research and working at the University of Adelaide (Australia).

The experiments showed that C. metallidurans rapidly accumulates toxic gold complexes from a solution prepared in the lab. This process promotes gold toxicity, which pushes the bacterium to induce oxidative stress and metal resistance clusters as well as an as yet uncharacterized gold-specific gene cluster in order to defend its cellular integrity. This leads to active biochemically-mediated reduction of gold complexes to nano-particulate, metallic gold, which may contribute to the growth of gold nuggets.

For this study scientists combined synchrotron techniques at the European Synchrotron Radiation Facility (ESRF) and the Advanced Photon Source (APS) and molecular microbial techniques to understand the biomineralisation in bacteria. It is the first time that these techniques have been used in the same study, so Frank Reith brought together a multinational team of experts in both areas for the success of the experiment. The team was made up of scientists from the University of Adelaide, the Commonwealth Scientific and Research Organization (CSIRO), the University of California (US), the University of Western Ontario and the University of Saskatchewan (Canada), Martin-Luther-Universitt (Germany), University of Nebraska-Lincoln (US), SCK.CEN (Belgium) and the APS (US) and the ESRF (France).

This is the first direct evidence that bacteria are actively involved in the cycling of rare and precious metals, such as gold. These results open the doors to the production of biosensors: "The discovery of an Au-specific operon means that we can now start to develop gold-specific biosensors, which will help mineral explorers to find new gold deposits. To achieve this we need to further characterize the gold-specific operon on a genomic as well as proteomic level. If funding for this research is granted I believe we can produce a functioning biosensor within three to five years", concludes Reith.


'/>"/>

Contact: Montserrat Capellas
capellas@esrf.fr
33-476-882-663
European Synchrotron Radiation Facility
Source:Eurekalert  

Related biology news :

1. UTSA biology researchers demystify elusive war zone bacterium
2. Scientists sequence genome of the N2-fixing, soil-living bacterium Azotobacter vinelandii
3. TB bacterium uses its sugar coat to sweeten its chances of living in lungs
4. Cyanobacterium sequenced features rare linear chromosome
5. UCR graduate student discovers, names bacterium linked to psyllid yellows
6. Single-celled bacterium works 24-7
7. Researchers decode genetics of rare photosynthetic bacterium
8. Bacterium sequenced makes rare form of chlorophyll
9. Kent State University Professor C. Owen Lovejoy helps unveil oldest hominid skeleton
10. MSU scientist helps map potato genome, hope to improve crop yield
11. Forest Service Web-based tool helps manage environmental risk
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bacterium helps formation of gold
(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
(Date:3/24/2017)... -- The Controller General of Immigration from Maldives Mr. ... have received the prestigious international IAIR Award for the most innovative high ... ... Maldives Immigration Controller ... (small picture on the right) have received the IAIR award for the ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks ... Strategy, will speak at the TMA 2017 Annual Meeting , October ... trends in the residential home security market and how smart safety and ... Parks ... "The residential ...
(Date:10/9/2017)... 9, 2017  BioTech Holdings announced today identification ... its ProCell stem cell therapy prevents limb loss ... Company, demonstrated that treatment with ProCell resulted in ... as compared to standard bone marrow stem cell ... in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses ... EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The ...
(Date:10/6/2017)... ... October 06, 2017 , ... The HealthTech Venture Network ... at their fourth annual Conference where founders, investors, innovative practitioners and collaborators are ... pitch competition showcasing early stage digital health and med tech companies. , This ...
Breaking Biology Technology: