Navigation Links
Bacterial roundabouts determine cell shape
Date:6/3/2011

This release is available in German.

Almost all bacteria owe their structure to an outer cell wall that interacts closely with the supporting MreB protein inside the cell. As scientists at the Max Planck Institute for Biochemistry and at the French INRA now show, MreB molecules assemble into larger units, but not - as previously believed into continuous helical structures. The circular movement of these units along the inside of the bacterial envelope is mediated by cell wall synthesis, which in turn requires the support of MreB. This mutual interaction may be a widespread phenomenon among bacteria and opens up new avenues for therapeutic intervention. The bacterial cell wall is already a major target for antibiotics. (Science, June 3, 2011)

Even single cells have to maintain their shape: In higher organisms, the supporting structures of the cytoskeleton, which include filament networks made of the protein actin, take care of this job. The much smaller bacterial cells possess similar cytoskeletal structures, such as the actin related protein MreB. Up to now, scientists believed that this molecule forms spiral structures on the inside of the cell membrane in non-spherical bacteria, which serve as a scaffold for the assembly of the comparatively rigid cell wall.

Using innovative imaging technologies based on fluorescent microscopy, the scientists in the laboratory of Roland Wedlich-Sldner have now been able to show that MreB proteins do not form such highly ordered structures and yet are organized in more complex ways than they had previously assumed. "MreB molecules assemble into larger units, or patches. They move in circular paths along the inside of the cell membrane, but without following a preferred direction", explains Julia Domnguez-Escobar, PhD student at the Max Planck Institute of Biochemistry.

A highly unexpected finding of the study was that the movement of MreB patches relies on a functioning cell wall. MreB structures cannot move on their own but are pulled along the bacterial envelope by the newly synthesized cell wall material. The MreB patches are located at the inside, the cell wall at the outside of the cell membrane. Thus, interaction is likely mediated by molecules that span the cell membrane. These molecular adapters link the incorporation of newly synthesized cellular material with the MreB units, which thereby follow the permanently growing cell wall structures.

Many parts of the cell wall are almost universally conserved in bacteria, making it likely that the newly discovered mechanism is widespread. Hence, the results could play an important role for the further investigation of bacterial cells, but also for medicine: "Cell wall synthesis already is a key target for antibiotics. New insights into the structure of the cell wall could open up urgently needed therapeutic alternatives", hopes Wedlich-Sldner.


'/>"/>

Contact: Dr. Roland Wedlich-Soeldner
wedlich@biochem.mpg.de
49-898-578-3410
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Innate immune system proteins attack bacteria by triggering bacterial suicide mechanisms
2. Understanding a bacterial immune system 1 step at a time
3. Could bacterial hitchhikers influence formation of new host species?
4. Bacterial genome may hold answers to mercury mystery
5. Bacterial wipes research study
6. Asthma tied to bacterial communities in the airway
7. New method attacks bacterial infections on contact lenses
8. 2 bacterial enzymes confer resistanceto common herbicide, say MU researchers
9. A pesky bacterial slime reveals its survival secrets
10. Remarkable biological complexity of bacterial cells is focus of newly released book
11. TYRX AIGISRx antibacterial envelope shows low infection rate, high CIED procedure success
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bacterial roundabouts determine cell shape
(Date:6/21/2016)... Columbia , June 21, 2016 ... to the new role of principal product architect ... named the director of customer development. Both will ... chief technical officer. The moves reflect NuData,s strategic ... in response to high customer demand and customer ...
(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/9/2016)... leader in attendance control systems is proud to announce the introduction of fingerprint attendance ... the right employees are actually signing in, and to even control the opening of ... ... ... Photo - ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... ... control cells — optogenetics — is key to exciting advances in the study ... spatially patterned light projected via free-space optics stimulates small, transparent organisms and excites ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., a ... of the next generation neuro-thrombectomy system for the treatment ... Tudor G. Jovin, MD to join its Scientific Advisory ... a strategic network of scientific and clinical experts to ... of the ANCD BRAIN ® to its clinical ...
(Date:12/8/2016)... Iowa (PRWEB) , ... December 08, 2016 , ... This ... asynchronous approvals for biotech crops. The authors focus on the economic effects in countries ... global approval of new biotech crops and the resultant risk of low level presence ...
(Date:12/8/2016)... Savannah River Remediation LLC group evaluated ... NT-MAX Lake & Pond Sludge and Muck ... conjunction with Hexa Armor/ Rhombo cover manufactured by ... Discharge Elimination System requirements. The Savannah ... of elevated pH levels, above 8.5, especially during ...
Breaking Biology Technology: