Navigation Links
Bacterial adaptation contributes to pneumococcal threat in sickle cell disease patients
Date:5/23/2014

Researchers have identified differences in the genetic code of pneumococcal bacteria that may explain why it poses such a risk to children with sickle cell disease and why current vaccines don't provide better protection against the infection. St. Jude Children's Research Hospital scientists led the study, which appeared earlier this month in the journal Cell Host & Microbe.

The findings will aid efforts to improve vaccine effectiveness and inform research into new ways to protect young sickle cell disease patients from life-threatening pneumococcal infections that can lead to pneumonia, meningitis, bloodstream infections and other problems. Despite advances in preventive care, including vaccination and prophylactic antibiotic therapy, pneumococcal infections still pose a serious health risk to children with sickle cell disease, who are at a much greater risk of possibly fatal infection than are members of the general public.

The results followed whole genome sequencing of hundreds of pneumococcal bacteria collected from the public and patients with sickle cell disease. The genome is carried in the DNA molecule and includes the instructions necessary to assemble and sustain life.

The analysis showed the bacteria have adapted to sickle cell patients, including measures aimed at preventing infection. As a result, disease-causing strains of the bacteria differ in children with and without sickle cell disease. For example, the pneumococcal strains collected from sickle cell patients in this study differed from the 13 pneumococcal strains included in the current vaccine recommended for children age 5 and younger.

"The results help explain why current vaccines haven't been as successful at protecting children with sickle cell disease from pneumococcal infections as they have in protecting other children," said Joshua Wolf, M.D., an assistant member of the St. Jude Department of Infectious Diseases and one of the study's lead authors. The other first authors are Robert Carter, Ph.D., of the St. Jude Computational Biology department, and Tim van Opijnen, formerly of Tufts University School of Medicine, Boston, and now of Boston College.

Work is already underway on vaccines that take a different approach to priming the disease-fighting immune system to protect high-risk groups, including children with sickle cell disease, said the study's corresponding author, Jason Rosch, Ph.D., an assistant member of the St. Jude Infectious Diseases department. "These results will help guide vaccine design going forward," he said.

Sickle cell disease is caused by an inherited mutation in the gene that carries instructions for making hemoglobin. That is the protein red blood cells use to carry oxygen. The mutation leaves red blood cells prone to the sickled shape that gives the disease its name and is also responsible for the episodes of intense pain, organ damage and other problems associated with the life-shortening disease. About 300,000 infants are born with sickle cell disease each year, making it the world's most common genetic disorder.

For this study, scientists compared the genomes of 322 pneumococcal bacteria collected from sickle cell patients between 1994 and 2011 to DNA from 327 strains obtained from individuals without sickle cell disease.

The analysis revealed that over time, the genomes of bacteria isolated from sickle cell patients shrank as genes and the corresponding DNA were discarded or combined. A comparison of the bacterial genomes from individuals with and without sickle cell disease suggested the changes reflected bacterial adaptation to their sickle cell host and contributed to the bacteria's ability to persist despite advances in preventive care.

Using a technique called transposon sequencing (Tn-seq), researchers showed that the bacteria's ability to cause widespread infection in mice with and without sickle cell disease was dramatically affected by changes in 60 different bacterial genes. The results demonstrated that bacteria faced different conditions in animals with and without sickle cell disease.

When researchers checked those same genes in bacteria isolated from sickle cell patients, they found six that were missing or altered in a significant percentage of samples. The list included genes involved in transporting iron into bacteria, bacterial metabolism and other processes that are likely altered in patients with sickle cell disease.

"We demonstrated that genes necessary to cause disease in the general public are expendable in patients with sickle cell disease," Rosch said.

The same methods used in this study could also be used to better understand the genetics behind other pneumococcal high-risk groups, including in individuals who are past retirement age or are obese.


'/>"/>

Contact: Summer Freeman
summer.freeman@stjude.org
901-595-3061
St. Jude Children's Research Hospital
Source:Eurekalert

Related biology news :

1. Bacterial shock to recapture essential phosphate
2. Researchers develop rapid test strips for bacterial contamination in swimming water
3. The activity of a bacterial effector protein seen in molecular detail
4. More than 1 way to be healthy: Map of bacterial makeup of humans reveals microbial rare biosphere
5. Consortium of scientists maps the human bodys bacterial ecosystem
6. Normal bacterial makeup has huge implications for health, says CU professor
7. Programmable DNA scissors found for bacterial immune system
8. UMass Amherst biochemists developing tools to stop plague and other bacterial threats
9. Innate immune system protein provides a new target in war against bacterial infections
10. Toward an alternative for antibiotics to fight bacterial infections?
11. Cystic fibrosis makes airways more acidic, reduces bacterial killing
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/9/2016)... , UAE, May 9, 2016 ... when it comes to expanding freedom for high net ... Even in today,s globally connected world, there is ... conferencing system could ever duplicate sealing your deal with ... obtaining second passports by taking advantage of citizenship via ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS ... the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The company, ... proud to add Target to its list of well-respected retailers. This list includes ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
Breaking Biology Technology: