Navigation Links
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists

(Santa Barbara, Calif.) In nature, it's a dog-eat-dog world, even in the realm of bacteria. Competing bacteria use "toxic darts" to disable each other, according to a new study by UC Santa Barbara biologists. Their research is published in the journal Nature.

"The discovery of toxic darts could eventually lead to new ways to control disease-causing pathogens," said Stephanie K. Aoki, first author and postdoctoral fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB). "This is important because resistance to antibiotics is on the rise."

Second author Elie J. Diner, a graduate student in biomolecular sciences and engineering, said: "First we need to learn the rules of this bacterial combat. It turns out that there are many ways to kill your neighbors; bacteria carry a wide range of toxic darts."

The scientists studied many bacterial species, including some important pathogens. They found that bacterial cells have stick-like proteins on their surfaces, with toxic dart tips. These darts are delivered to competing neighbor cells when the bacteria touch. This process of touching and injecting a toxic dart is called "contact dependent growth inhibition," or CDI.

Some targets have a biological shield. Bacteria protected by an immunity protein can resist the enemy's disabling toxic darts. This immunity protein is called "contact dependent growth inhibition immunity." The protein inactivates the toxic dart.

The UCSB team discovered a wide variety of potential toxic-tip proteins carried by bacteria cells nearly 50 distinct types have been identified so far, according to Christopher Hayes, co-author an associate professor at MCDB. Each bacterial cell must also have immunity to its own toxic dart. Otherwise, carrying the ammunition would cause cell suicide.

Surprisingly, when a bacterial cell is attacked and has no immunity protein it may not die. However, it often ceases to grow. The cell is inactivated, inhibited from growth. Similarly, many antibiotics do not kill bacteria; they only prevent the bacteria from growing. Then the body flushes out the dormant cells.

Some toxic tips appear to function inside the targeted bacteria by cutting up enemy RNA so the cell can no longer synthesize protein and grow. Other toxic tips operate by cutting up enemy DNA, which prevents replication of the cell.

"Our data indicate that CDI systems are also present in a broad range of bacteria, including important plant and animal pathogens such as E. coli which causes urinary tract infections, and Yersinia species, including the causative agent of plague," said senior author David Low, professor of MCDB. "Bacteria may be using these systems to compete with one another in the soil, on plants, and in animals. It's an amazingly diverse world."

The team studied the bacteria responsible for soft rot in potatoes, called Dickeya dadantii. This bacteria also invades chicory leaves, chrisanthemums, and other vegetables and plants.


Contact: Gail Gallessich
University of California - Santa Barbara

Related biology news :

1. Army-funded technology detects bacteria in water
2. Researchers unlock the secret of bacterias immune system
3. New sensor derived from frogs may help fight bacteria and save wildlife
4. Bacteria gauge cold with molecular measuring stick
5. TYRX AIGISRx antibacterial envelope shows low infection rate, high CIED procedure success
6. NIH-funded scientists sequence genomes of lyme disease bacteria
7. Key difference in how TB bacteria degrade doomed proteins
8. Gambling on bacteria
9. UCLA-led research team finds that bacteria can stand up and walk
10. Scientists trick bacteria with small molecules
11. Notre Dame researcher helps discover walking properties of bacteria
Post Your Comments:
Related Image:
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... ... Personal eye wash is a basic first aid supply for any work environment, but most ... you rinse first if a dangerous substance enters both eyes? It’s one less decision, and ... unique dual eye piece. , “Whether its dirt and debris, or an acid or alkali, ...
(Date:10/11/2017)... the Netherlands and LAGUNA HILLS, Calif. ... The Institute of Cancer Research, London ... use MMprofiler™ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients ... trial known as MUK nine . The University of ... trial, which is partly funded by Myeloma UK, and ICR ...
(Date:10/10/2017)... ... , ... San Diego-based team building and cooking events company, Lajollacooks4u, has unveiled ... bold new look is part of a transformation to increase awareness, appeal to new ... , It will also expand its service offering from its signature gourmet cooking classes ...
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks Associates ... will speak at the TMA 2017 Annual Meeting , October 11 ... in the residential home security market and how smart safety and security ... Parks Associates: ... "The residential security ...
Breaking Biology Technology: