Navigation Links
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists
Date:11/18/2010

(Santa Barbara, Calif.) In nature, it's a dog-eat-dog world, even in the realm of bacteria. Competing bacteria use "toxic darts" to disable each other, according to a new study by UC Santa Barbara biologists. Their research is published in the journal Nature.

"The discovery of toxic darts could eventually lead to new ways to control disease-causing pathogens," said Stephanie K. Aoki, first author and postdoctoral fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB). "This is important because resistance to antibiotics is on the rise."

Second author Elie J. Diner, a graduate student in biomolecular sciences and engineering, said: "First we need to learn the rules of this bacterial combat. It turns out that there are many ways to kill your neighbors; bacteria carry a wide range of toxic darts."

The scientists studied many bacterial species, including some important pathogens. They found that bacterial cells have stick-like proteins on their surfaces, with toxic dart tips. These darts are delivered to competing neighbor cells when the bacteria touch. This process of touching and injecting a toxic dart is called "contact dependent growth inhibition," or CDI.

Some targets have a biological shield. Bacteria protected by an immunity protein can resist the enemy's disabling toxic darts. This immunity protein is called "contact dependent growth inhibition immunity." The protein inactivates the toxic dart.

The UCSB team discovered a wide variety of potential toxic-tip proteins carried by bacteria cells nearly 50 distinct types have been identified so far, according to Christopher Hayes, co-author an associate professor at MCDB. Each bacterial cell must also have immunity to its own toxic dart. Otherwise, carrying the ammunition would cause cell suicide.

Surprisingly, when a bacterial cell is attacked and has no immunity protein it may not die. However, it often ceases to grow. The cell is inactivated, inhibited from growth. Similarly, many antibiotics do not kill bacteria; they only prevent the bacteria from growing. Then the body flushes out the dormant cells.

Some toxic tips appear to function inside the targeted bacteria by cutting up enemy RNA so the cell can no longer synthesize protein and grow. Other toxic tips operate by cutting up enemy DNA, which prevents replication of the cell.

"Our data indicate that CDI systems are also present in a broad range of bacteria, including important plant and animal pathogens such as E. coli which causes urinary tract infections, and Yersinia species, including the causative agent of plague," said senior author David Low, professor of MCDB. "Bacteria may be using these systems to compete with one another in the soil, on plants, and in animals. It's an amazingly diverse world."

The team studied the bacteria responsible for soft rot in potatoes, called Dickeya dadantii. This bacteria also invades chicory leaves, chrisanthemums, and other vegetables and plants.


'/>"/>

Contact: Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related biology news :

1. Army-funded technology detects bacteria in water
2. Researchers unlock the secret of bacterias immune system
3. New sensor derived from frogs may help fight bacteria and save wildlife
4. Bacteria gauge cold with molecular measuring stick
5. TYRX AIGISRx antibacterial envelope shows low infection rate, high CIED procedure success
6. NIH-funded scientists sequence genomes of lyme disease bacteria
7. Key difference in how TB bacteria degrade doomed proteins
8. Gambling on bacteria
9. UCLA-led research team finds that bacteria can stand up and walk
10. Scientists trick bacteria with small molecules
11. Notre Dame researcher helps discover walking properties of bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
(Date:5/20/2016)... May 20, 2016  VoiceIt is excited to ... VoicePass. By working together, VoiceIt and ... VoiceIt and VoicePass take slightly different approaches to ... both security and usability. ... this new partnership. "This marketing and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the ... at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application ... team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
(Date:6/23/2016)... , June 23, 2016 ... Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 Published ... the peer-reviewed journal from touchONCOLOGY, Andrew D ... cost of cancer care is placing an increasing ... of expensive biologic therapies. With the patents on ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: