Navigation Links
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists
Date:11/18/2010

(Santa Barbara, Calif.) In nature, it's a dog-eat-dog world, even in the realm of bacteria. Competing bacteria use "toxic darts" to disable each other, according to a new study by UC Santa Barbara biologists. Their research is published in the journal Nature.

"The discovery of toxic darts could eventually lead to new ways to control disease-causing pathogens," said Stephanie K. Aoki, first author and postdoctoral fellow in UCSB's Department of Molecular, Cellular, and Developmental Biology (MCDB). "This is important because resistance to antibiotics is on the rise."

Second author Elie J. Diner, a graduate student in biomolecular sciences and engineering, said: "First we need to learn the rules of this bacterial combat. It turns out that there are many ways to kill your neighbors; bacteria carry a wide range of toxic darts."

The scientists studied many bacterial species, including some important pathogens. They found that bacterial cells have stick-like proteins on their surfaces, with toxic dart tips. These darts are delivered to competing neighbor cells when the bacteria touch. This process of touching and injecting a toxic dart is called "contact dependent growth inhibition," or CDI.

Some targets have a biological shield. Bacteria protected by an immunity protein can resist the enemy's disabling toxic darts. This immunity protein is called "contact dependent growth inhibition immunity." The protein inactivates the toxic dart.

The UCSB team discovered a wide variety of potential toxic-tip proteins carried by bacteria cells nearly 50 distinct types have been identified so far, according to Christopher Hayes, co-author an associate professor at MCDB. Each bacterial cell must also have immunity to its own toxic dart. Otherwise, carrying the ammunition would cause cell suicide.

Surprisingly, when a bacterial cell is attacked and has no immunity protein it may not die. However, it often ceases to grow. The cell is inactivated, inhibited from growth. Similarly, many antibiotics do not kill bacteria; they only prevent the bacteria from growing. Then the body flushes out the dormant cells.

Some toxic tips appear to function inside the targeted bacteria by cutting up enemy RNA so the cell can no longer synthesize protein and grow. Other toxic tips operate by cutting up enemy DNA, which prevents replication of the cell.

"Our data indicate that CDI systems are also present in a broad range of bacteria, including important plant and animal pathogens such as E. coli which causes urinary tract infections, and Yersinia species, including the causative agent of plague," said senior author David Low, professor of MCDB. "Bacteria may be using these systems to compete with one another in the soil, on plants, and in animals. It's an amazingly diverse world."

The team studied the bacteria responsible for soft rot in potatoes, called Dickeya dadantii. This bacteria also invades chicory leaves, chrisanthemums, and other vegetables and plants.


'/>"/>

Contact: Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related biology news :

1. Army-funded technology detects bacteria in water
2. Researchers unlock the secret of bacterias immune system
3. New sensor derived from frogs may help fight bacteria and save wildlife
4. Bacteria gauge cold with molecular measuring stick
5. TYRX AIGISRx antibacterial envelope shows low infection rate, high CIED procedure success
6. NIH-funded scientists sequence genomes of lyme disease bacteria
7. Key difference in how TB bacteria degrade doomed proteins
8. Gambling on bacteria
9. UCLA-led research team finds that bacteria can stand up and walk
10. Scientists trick bacteria with small molecules
11. Notre Dame researcher helps discover walking properties of bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bacteria use 'toxic darts' to disable each other, according to UCSB scientists
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
(Date:5/6/2017)... -- RAM Group , Singaporean based technology ... biometric authentication based on a novel  quantum-state ... perform biometric authentication. These new sensors are based on a ... Group and its partners. This sensor will have widespread ... security. Ram Group is a next generation sensor ...
(Date:4/18/2017)... SUNNYVALE, Calif. , April 18, 2017  Socionext Inc., a ... prototype of a media edge server, the M820, which features the ... face recognition software provided by Tera Probe, Inc., will be showcased ... and at the NAB show at the Las Vegas ... ...
Breaking Biology News(10 mins):
(Date:8/21/2017)... Linda, Ca (PRWEB) , ... August 21, 2017 ... ... has arranged for two speakers for this two-part educational webinar, in which attendees ... complex subunit, and associated protein factor composition. Along with an overview of the ...
(Date:8/18/2017)... ... 2017 , ... Producers of the award winning American Farmer ... upcoming episode, scheduled to broadcast fourth quarter 2017. American Farmer airs Tuesdays at ... family-owned seed company. Educating audiences about its broad portfolio of products to help ...
(Date:8/17/2017)... Springs, FL (PRWEB) , ... August 17, 2017 ... ... announced that the stock market news outlet had provided a research update on ... company's nasally administered TRT product. , According to Soulstring, prescription rates for Natesto® ...
(Date:8/16/2017)... ... August 16, 2017 , ... Tunnell Consulting announced today that ... ISPE Annual Meeting and Expo , to be held October 29 through November ... is “Driving innovation to advance patient therapies.” , The ISPE Annual Meeting and Expo ...
Breaking Biology Technology: