Navigation Links
Bacteria manipulate salt to build shelters to hibernate
Date:7/25/2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, bacteria manipulate the sodium chloride crystallisation to create biomineralogical biosaline 3D morphologically complex formations, where they hibernate. Afterwards, simply by rehydrating the material, bacteria are revived. The discovery was made by chance with a home microscope, but it made the cover of the Astrobiology journal and may help to find signs of life on other planets.

The bacterium Escherichia coli is one of the most studied living forms by biologists, but none had to date noticed what this microorganism can do within a simple drop of salt water: create impressive biomineralogical patterns in which it shelters itself when it dries. "It was a complete surprise, a fully unexpected result, when I introduced E. coli cells into salt water and I realised that the bacteria had the ability to join the salt crystallisation and modulate the development and growth of the sodium chloride crystals," biologist Jos Mara Gmez told SINC.

"Thus, in around four hours, in the drop of water that had dried, an impressive tapestry of biosaline patterns was created with complex 3D architecture," added the researcher, who made the discovery with the microscope in his house, although he later confirmed it with the help of his colleagues from the Laboratory of BioMineralogy and Astrobiological Research (LBMARS, University of Valladolid-CSIC), Spain.

Until present, we knew of similar patterns created from saline solutions and isolated proteins, but this is the first report that demonstrates how whole bacterial cells can manage the crystallisation of sodium chloride (NaCl) and generate self-organised biosaline structures of a fractal or dendritic appearance. The study and the striking three-dimensional patterns are on the front cover of this month's 'Astrobiology' edition.

"The most interesting result is that the bacteria enter a state of hibernation inside these desiccated patterns, but they can later be 'revived' simply by rehydration," said Gmez, who highlighted a very important result from an astrobiological point of view: "Given the richness and complexity of these formations, they may be used as biosignatures in the search for life in extremely dry environments outside our own planet, such as the surface of Mars or that of Jupiter's satellite, Europa".

In fact, the LBMARS laboratory participates in the development of the Raman RLS instrument of the ExoMars rover, the mission that the European Space Agency (ESA) will send to the red planet in 2018, and this new finding may help them search for possible biological signs. According to the researcher, "the patterns observed will help calibrate the instrument and test its detection of signs of hibernation or traces of Martian life".

"The challenge we now face is to understand how the bacteria control the crystallisation of NaCl to create these incredible 3D structures and vice-versa, how salt influences this action, as well as studying the structure of these microorganisms that withstand desiccation," said Gmez, who reminds us that a simple curiosity and excitement about science, although it may be with simple means, still allows us to make some interesting discoveries: "This is a tribute to scientists such as the Spaniard Santiago Ramn y Cajal and the Dutch scientist Anton van Leeuwenhoek, who also worked from home with their own microscopes".


'/>"/>
Contact: SINC
info@agenciasinc.es
34-914-251-820
FECYT - Spanish Foundation for Science and Technology
Source:Eurekalert  

Related biology news :

1. Vanderbilt study shows therapeutic bacteria prevent obesity in mice
2. Proteins hands enable bacteria to establish infection, research finds
3. Bacteria found in bladders of healthy women differ from those in women with incontinence
4. Bacteria hijack plentiful iron supply source to flourish
5. Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload
6. When faced with some sugars, bacteria can be picky eaters
7. Mechanism that prevents lethal bacteria from causing invasive disease is revealed
8. Bringing the bling to antibacterials
9. A first: Scientists show bacteria can evolve a biological timer to survive antibiotics
10. Marine bacteria are natural source of chemical fire retardants
11. Slaying bacteria with their own weapons
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Bacteria manipulate salt to build shelters to hibernate
(Date:12/22/2016)... December 22, 2016 SuperCom (NASDAQ: ... solutions for the e-Government, Public Safety, HealthCare, and Finance sectors announced ... has been selected to implement and deploy a community-based supportive services ... Northern California , further expanding its presence in the state. ... This new program, ...
(Date:12/19/2016)... España y TORONTO , 19 de diciembre de ... Biologics Inc. que permitirá el desarrollo acelerado de MSC-1, un anticuerpo ... varios tipos de tumor en 2017, con múltiples sitios previstos a ... ... con objetivo en el factor inhibidor de leucemia (LIF), una citoquina ...
(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical device ... billion by 2021 from USD 5.31 billion in 2016, at a ... ... driven by technological advancements in medical devices, launch of a growing ... for wireless connectivity among healthcare providers, and increasing focus on physical ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... ... 2017 , ... DaVita Clinical Research (DCR), a ... device development, and Prism Clinical Research , a leader in providing fully ... Clinical Trials (VCT) has been selected by both companies as an exclusive ...
(Date:1/19/2017)... Acupath Laboratories, Inc., a leading provider of ... Executive Committee that will guide the company,s vision and ... Cucci , a 15-year veteran of the anatomic pathology ... to Chief Sales Officer .  Prior to joining ... sales leadership roles at several leading lab industry organizations ...
(Date:1/18/2017)... According to a new market research report "In situ Hybridization Market ... User (Molecular Diagnostic Laboratories, Academic and Research Institutions) - Global Forecast to 2021" ... 2021 from USD 557.1 Million in 2016, growing at a CAGR of 5.8%. ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... --  Parent Project Muscular Dystrophy (PPMD) , a nonprofit ... dystrophy (Duchenne) , today announced a $600,000 grant to ... (NJIT) and Talem Technologies (Talem) as part of the ... assist people living with Duchenne. PPMD is funding a ... computer, software, a force sensor and a motor – ...
Breaking Biology Technology: