Navigation Links
Bacteria are models of efficiency
Date:2/4/2009

The bacterium Escherichia coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. This bacterium can be thought of as a factory with just one product: itself. It exists to make copies of itself, and its business plan is to make them at the lowest possible cost, with the greatest possible efficiency. Efficiency, in the case of a bacterium, can be defined by the energy and resources it uses to maintain its plant and produce new cells, versus the time it expends on the task.

Dr. Tsvi Tlusty and research student Arbel Tadmor of the Physics of Complex Systems Department developed a mathematical model for evaluating the efficiency of these microscopic production plants. Their model, which recently appeared in the online journal PLoS Computational Biology, uses only five remarkably simple equations to check the efficiency of these complex factory systems.

The equations look at two components of the protein production process: ribosomes the machinery in which proteins are produced and RNA polymerase an enzyme that copies the genetic code for protein production onto strands of messenger RNA for further translation into proteins. RNA polymerase is thus a sort of work 'supervisor' that keeps protein production running smoothly, checks the specs and sets the pace. The first equation assesses the production rate of the ribosomes themselves; the second the protein output of the ribosomes; the third the production of RNA polymerase. The last two equations deal with how the cell assigns the available ribosomes and polymerases to the various tasks of creating other proteins, more ribosomes or more polymerases.

The theoretical model was tested in real bacteria. Do bacteria 'weigh' the costs of constructing and maintaining their protein production machinery against the gains to be had from being able to produce more proteins in less time? What happens when a critical piece of equipment is in short supply, say a main ribosome protein? Tlusty and Tadmor found that their model was able to accurately predict how an E. coli would change its production strategy to maximize efficiency following disruptions in the work flow caused by experimental changes to genes with important cellular functions.

What's the optimum? The model predicts that a bacterium, for instance, should have seven genes for ribosome production. It turns out that that's exactly the number an average E. coli cell has. Bacteria having five or nine get a much lower efficiency rating. Evolution, in other words, is a master efficiency expert for living factories, meeting any challenges that arise as production conditions change.


'/>"/>

Contact: Yivsam Azgad
news@weizmann.ac.il
972-893-43856
Weizmann Institute of Science
Source:Eurekalert

Related biology news :

1. Single gene lets bacteria jump from host to host
2. Scientists identify bacteria that increase plant growth
3. Research elucidates way lungs fight bacteria and prevent infection
4. NYU scientists discover dangerous new method for bacterial toxin transfer
5. Uncultured bacteria found in amniotic fluids of women who experience preterm births
6. New research lights up chronic bacterial infection inside bone
7. Scientists fool bacteria into killing themselves to survive
8. Computation and genomics data drive bacterial research into new golden age
9. Winter brings flu, summer brings bacterial infections
10. Bacterial biofilms as fossil makers
11. Escherichia coli bacteria transferring between humans and mountain gorillas
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/10/2017)... Feb 10, 2017 Research and ... "Personalized Medicine - Scientific and Commercial Aspects" to ... ... Diagnosis is integrated with therapy for selection of treatment as ... detection and prevention of disease in modern medicine. Biochip/microarray technologies ...
(Date:2/8/2017)... Feb. 7, 2017 The biometrics market ... the confluence of organizations, desires to better authenticate ... systems (password and challenge questions), biometrics is quickly ... systems. The market is driven by use cases, ... consumer and enterprise uses cases, with consumer-facing use ...
(Date:2/6/2017)... 2017 According to Acuity Market Intelligence, ... authorities to continue to embrace biometric and digital ... Automated Border Control (ABC) eGates and 1436 Automated ... than 163 ports of entry across the globe. ... a combined CAGR of 37%. APC Kiosks reached ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... USA, and CARDIFF, UK (PRWEB) , ... February ... ... international society for optics and photonics , have been named Fellows of the ... significant scientific and technical contributions in the multidisciplinary fields of optics, photonics, and ...
(Date:2/22/2017)... , Feb. 22, 2017 Scientists propose ... inflammation and organ damage in Gaucher and maybe other ... risks and lower costs than current therapies. ... Hospital Medical Center , which also included investigators from ... , report their data Feb. 22. The study was ...
(Date:2/22/2017)... Dublin - Research and Markets ... (Bio-Pesticide) Market-By Type, By Application, By End User, By Region, By ... ... Protection Market is forecasted to grow at a CAGR of 11.33% ... biological crop protection market is driven by the surging demand for ...
(Date:2/22/2017)... DIEGO , Feb. 22, 2017  Creative ... expansion of its translational research program using its ... of laboratory facilities in San Diego.  The Company ... BioLabs facility, a biotechnology incubator sponsored by the ... In November 2016, the Company obtained an ...
Breaking Biology Technology: