Navigation Links
BU team wins $4.1M genome grant

BOSTON (9-15-10) -- A team led by Boston University biomedical engineering researchers has won a $4.1 million, four-year grant from the National Institutes of Health to refine its nanoscale, low-cost, ultra-fast DNA sequencing method that could lead to individual genome sequencing for less than $1,000.

Developed in the past four years on an initial, $2.2 million NIH grant and led by Boston University Biomedical Engineering Professor Amit Meller, the project is one of 10 to receive funding from the NIH National Human Genome Research Institute (NHGRI) this year under its "Revolutionary Sequencing Technology Development$1,000 Genome" program. The new NHGRI awards were announced this week.

Since its founding in 2004, the $1,000 Genome program has produced innovations that have reduced the cost of genome sequencing from $10 million to $20,000, and cut the time needed to complete the process from a few months to a week. But reaching the $1,000 mark will require creative, unprecedented approaches.

Toward that end, Meller and his team have already demonstrated the first use of solid state nanoporesfour-nanometer-wide holes in silicon chips that read DNA strands as they pass throughto optically sequence the four nucleotides that encode each DNA molecule. Their novel, highly efficient, optically-based method to detect single DNA molecules in nanopores could significantly reduce the cost of DNA sequencing and the time required to sequence a complete human genome.

"We are the first to employ optical detection from individual nanopores, and this allows us to probe multiple pores simultaneously using a single high-speed CCD camera," said Meller, referring to the charge-coupled devices that researchers use to obtain high-quality images. "As a result, our method can be scaled up vastly, ultimately allowing us to probe thousands of nanopores and obtain unprecedented DNA sequencing throughput."

Combining optical detection capability with the ability to analyze extremely long DNA molecules with superior sensitivity, the team's solid state nanopores are uniquely positioned to compete with current, third-generation DNA sequencing methods for cost, speed and accuracy. Unlike those approaches, the new nanopore method does not rely on enzymes whose activity limits the rate at which DNA sequences can be read; instead, readout speed is restricted only by current optical detection limits.

"This puts us in the unique advantageous position of being able to claim that our sequencing method is as fast as the rapidly evolving CCD/CMOS technologies," said Meller. "We currently have the capability of reading out about 100 bases per second, which is already much faster than other commercial third generation methods. This is only the starting point for us, and we expect to significantly increase this rate in the next year."

Licensing intellectual property from Boston University and Harvard University, Meller and his collaborators founded NobleGen Biosciences last February to develop and commercialize nanopore sequencing based on the new method. Researchers from the University of Massachusetts Medical School in Worcester are also working on the current project.

"Given the aggressive research and development effort that's now underway, I estimate that it will take less than five years to bring a highly competitive and cheap DNA sequencing to the medical marketplace" said Meller.


Contact: Mike Seele
Boston University College of Engineering

Related biology news :

1. NC State researchers get to root of parasite genome
2. Worm genome offers clues to evolution of parasitism
3. Complete Genomics launches, becomes worlds first large-scale human genome sequencing company
4. Diatom genome helps explain success in trapping excess carbon in oceans
5. Washington University scientists first to sequence genome of cancer patient
6. Research consortium to sequence turkey genome
7. DOE Joint Genome Institute completes soybean genome
8. Breast cancer genome shows evolution, instability of cancer
9. In lung cancer, silencing one crucial gene disrupts normal functioning of genome
10. Gene switch sites found mainly on shores, not just islands of the human genome
11. Genome Medicine: Bridging the gap between research and clinical practice
Post Your Comments:
Related Image:
BU team wins $4.1M genome grant
(Date:11/2/2015)... , Nov. 2, 2015  SRI International has ... to provide preclinical development services to the National Cancer ... SRI will provide scientific expertise, modern testing and support ... of preclinical pharmacology and toxicology studies to evaluate potential ... --> The PREVENT Cancer Drug Development Program is ...
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
(Date:10/29/2015)... NXTD ) ("NXT-ID" or ... the growing mobile commerce market and creator of ... leading marketplace to discover and buy innovative technology ... on StackSocial for this holiday season.   ... a biometric authentication company focused on the growing ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... LUMPUR, Malaysia , Nov. 24, 2015 /PRNewswire/ ... global contract research organisation (CRO) market. The trend ... result in lower margins but higher volume share ... increased capacity and scale, however, margins in the ... Research Organisation (CRO) Market ( ), ...
(Date:11/24/2015)... -- Cepheid (NASDAQ: CPHD ) today announced that ... and invited investors to participate via webcast. ... 1, 2015 at 11.00 a.m. Eastern Time --> ... 1, 2015 at 11.00 a.m. Eastern Time --> ... NY      Tuesday, December 1, 2015 at 11.00 ...
(Date:11/24/2015)... , Nov. 24, 2015 /CNW/ - iCo Therapeutics ("iCo" ... reported financial results for the quarter ended September ... in Canadian dollars and presented under International Financial ... States ," said Andrew Rae , ... regarding iCo-008 are not only value enriching for ...
(Date:11/24/2015)... ... 24, 2015 , ... International Society for Pharmaceutical Engineering (ISPE) ... annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in ... largest number of attendees in more than a decade. , “The 2015 ...
Breaking Biology Technology: