Navigation Links
BESC researchers tap into genetic reservoir of heat-loving bacteria
Date:7/2/2012

The identification of key proteins in a group of heat-loving bacteria by researchers at the Department of Energy's BioEnergy Science Center could help light a fire under next-generation biofuel production.

Scientists have long been on the hunt for cost-effective ways to break down complex plant material such as switchgrass in order to access sugars that are fermented to make biofuels. Conventional processes involve the addition of commercially produced enzymes to break down the cellulose. BESC scientists are exploring alternative options, including the use of certain bacteria that are naturally capable of deconstructing plant biomass in their environment.

To better understand the mechanisms behind this microbial ability, a team of researchers from North Carolina State University, Oak Ridge National Laboratory and the University of Georgia analyzed the genomes of eight species of bacteria from the genus Caldicellulosiruptor. These bacterial species, found in globally diverse sites from New Zealand to Iceland to Russia, can degrade plant biomass at extremely high temperatures.

"Earlier, we had found that not all members of this group were able to equally degrade cellulose as others were," said NCSU's Sara Blumer-Schuette. "The main aim of this project was to figure what the true determinants were for strongly celluloytic bacteria from this genus what made them celluloytic versus the others."

By comparing the genomes of eight related yet variable species, the research team pinpointed which genes were unique to species with the ability to break down cellulose. The researchers, whose results are published in the Journal of Bacteriology, conducted additional analysis using proteomics to verify how these particular genes are expressed into proteins that perform cellulose degradation.

The team's research uncovered a previously uncharacterized group of proteins determined to be adhesins, which help the bacteria grab onto a chunk of plant material to more efficiently break it apart. This finding further clarified why certain bacterial species in the genus are better than others at deconstructing plant material.

"Previously, we knew these bacteria would secrete enzymes that would then freely diffuse into their environment," Blumer-Schuette said. "We assumed that the enzymes would by chance stick to either cellulose or a piece of biomass in their environment and start to degrade it. Now we're seeing that a lot of proteins are involved in maintaining a tight interface between the bacterium and cellulose."

A key challenge in making the production of lignocellulosic biofuels cost-effective is improving the efficiency of access to the sugars imprisoned in a plant's cell wall.

"Yet nature, in the form of the microbes described here, has been doing this very effectively all along," said Paul Gilna, director of BESC, of which the authors are members. "If we can understand the processes already in place with cellulose-degrading organisms such as the Caldicellulosiruptor microbes described here, we can make huge leaps in learning how to harness microbes to digest plant biomass and ferment sugars into biofuels at the same time."


'/>"/>

Contact: Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308
DOE/Oak Ridge National Laboratory
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
Breaking Biology News(10 mins):
(Date:6/20/2017)... ... June 20, 2017 , ... Do More with OHAUS , With the launch ... supplier in the weighing industry, to extending its expertise across the entire laboratory to ... hybridizations and more, allowing for its customers to 'Do More' in the ...
(Date:6/19/2017)... , ... June 19, 2017 , ... A colony of ... its cells and tissues by delivering pollen and nectar containing nutrients necessary for growth ... to stay healthy. , Many recent indicators point to a decline in honey bee ...
(Date:6/15/2017)... ... June 15, 2017 , ... ... secured a Series B round of financing in the amount of $6 million. ... private investors participated in the round. , The Series B funding will enable ...
(Date:6/14/2017)... , ... June 14, 2017 , ... ... 8th to discuss the initiative steered by the executive search firm, “Building Value ... of the Board of Directors of Foundation Medicine, led an open discussion with ...
Breaking Biology Technology: