Navigation Links
B cells produce antibodies 'when danger calls, but not when it whispers'

The immune system's B cells protect us from disease by producing antibodies, or "smart bullets," that specifically target invaders such as pathogens and viruses while leaving harmless molecules alone. But how do B cells determine whether a threat is real and whether to start producing these weapons?

An international team of life scientists shows in the May 16 issue of the journal Science how and why these cells respond only to true threats.

"It is critical for B cells to respond either fully or not at all. Anything in between causes disease," said the study's senior author, Alexander Hoffmann, a professor of microbiology, immunology and molecular genetics in the UCLA College of Letters and Science. "If B cells respond wimpily when there is a real pathogen, you have immune deficiency, and if they respond inappropriately to something that is not a true pathogen, then you have autoimmune disease."

The antibodies produced by B cells attack antigens molecules associated with pathogens, microbes and viruses. A sensor on the cell's surface is meant to recognize a specific antigen, and when the sensor encounters that antigen, it sends a signal that enables the body's army of B cells to respond rapidly. However, there may be similar molecules nearby that are harmless. The B cells should ignore their signals something they fail to do in autoimmune diseases.

So how do the B cells decide whether to start producing antibodies?

"These immune cells are somewhat hard of hearing, which is appropriate because the powerful and potentially destructive immune responses should jump into action only when danger calls, not when it whispers," said Hoffmann.

The B cells make their response only when a rather high threshold is reached, Hoffmann and his colleagues report. A small or moderate signal from a harmless molecule, for instance gets no response, which reduces the risk of false alarms.

"It's like your car's airbag, which won't be deployed unless you really need it," Hoffmann said. "You can imagine that if the airbag were poorly designed and if you brake very hard or have a slight accident, it could deploy slowly and be useless. You want it to deploy fully or not at all. That is what the B cell does when deciding whether it confronts something that is truly pathogenic or harmless. No B cell responds partially."

We have billions of B cells, and each one creates this threshold through a molecular circuit involving two molecules. One of these molecules, known as CARMA1, activates the other, IKKb, which further activates the first one.

"Positive feedback between the two causes infinite growth, and once you trigger it, there is no way to turn it off until the smart bullets are shot," said Hoffmann, whose research aims to understand and decode the language of cells. "But a second feature of positive feedback is that it can create a threshold only above which this runaway activation occurs."

He and his colleagues developed mathematical equations based on the molecular circuit and were then able to simulate, virtually, B cell responses. The team's resulting predictions were tested experimentally by their collaborators at the Laboratory for Integrated Cellular Systems at Japan's RIKEN Center for Integrative Medical Sciences. In one part of the study, the researchers made specific mutations in IKKb so that it could not signal back to CARMA1. They also made mutations in CARMA1 to prevent it from receiving the signal from IKKb. In both cases, the B cells responded partially, some of the time, like a weakly inflating airbag.

"It became a gray-zone response rather than a black-and-white response," said Hoffmann, who constructs mathematical models of biology.

The research could lead to better diagnosis of disease if patients with an autoimmune disorder, such as lupus, have a defect in this molecular circuit.


Contact: Stuart Wolpert
University of California - Los Angeles

Related biology news :

1. Enzyme helps stem cells improve recovery from limb injuries
2. Cancer stem cells under the microscope at Albert Einstein College of Medicine symposium
3. Patient stem cells used to make heart disease-on-a-chip
4. New method sneaks drugs into cancer cells before triggering release
5. How immune cells use steroids
6. rAAV/ABAD-DP-6His attenuates oxidative stress induced injury of PC12 cells
7. Ability to isolate and grow breast tissue stem cells could speed cancer research
8. Simulated model of eyes 3D structure facilitates stem cells transplant
9. Immune cells outsmart bacterial infection by dying, Penn Vet study shows
10. A first: Nuclear transfer to reprogram adult patient cells into stem cells
11. Stem cells from teeth can make brain-like cells
Post Your Comments:
Related Image:
B cells produce antibodies 'when danger calls, but not when it whispers'
(Date:11/26/2015)... Research and Markets ( ) has ... - Technology and Patent Infringement Risk Analysis" report ... --> Fingerprint sensors using capacitive technology represent ... sensor vendor Idex forecasts an increase of 360% of ... and of the fingerprint sensor market between 2014 and ...
(Date:11/20/2015)... November 20, 2015 NXTD ) ... on the growing mobile commerce market and creator of ... Pereira , was recently interviewed on The RedChip ... on this weekend on Bloomberg Europe , Bloomberg ... --> NXTD ) ("NXT-ID" or the "Company"), ...
(Date:11/19/2015)...  Based on its in-depth analysis of the biometric ... the 2015 Global Frost & Sullivan Award for Product ... this award to the company that has developed the ... the market it serves. The award recognizes the extent ... customer base demands, the overall impact it has in ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... Nov. 25, 2015 Orexigen® Therapeutics, Inc. (Nasdaq: ... in a fireside chat discussion at the Piper Jaffray ... . The discussion is scheduled for Wednesday, December ... .  A replay will be available for 14 ... , Julie NormartVP, Corporate Communications and Business Development ...
(Date:11/24/2015)... N.J. (PRWEB) , ... November 24, 2015 , ... The ... the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the ... through his or her work with turfgrass. , Clarke, of Iselin, N.J., ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... But unless it is bound to proteins, copper is also toxic to cells. ... at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in ...
(Date:11/24/2015)... November 24, 2015 --> ... research report "Oligonucleotide Synthesis Market by Product & Services ... Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, ... MarketsandMarkets, the market is expected to reach USD 1,918.6 ... at a CAGR of 10.1% during the forecast period. ...
Breaking Biology Technology: