Navigation Links
Atypical brain circuits may cause slower gaze shifting in infants who later develop autism
Date:3/19/2013

CHAPEL HILL, N.C. Infants at 7 months of age who go on to develop autism are slower to reorient their gaze and attention from one object to another when compared to 7-month-olds who do not develop autism, and this behavioral pattern is in part explained by atypical brain circuits.

Those are the findings of a new study led by University of North Carolina School of Medicine researchers and published online March 20 by the American Journal of Psychiatry.

"These findings suggest that 7-month-olds who go on to develop autism show subtle, yet overt, behavioral differences prior to the emergence of the disorder. They also implicate a specific neural circuit, the splenium of the corpus callosum, which may not be functioning as it does in typically developing infants, who show more rapid orienting to visual stimuli," said Jed T. Elison, PhD, first author of the study.

Elison worked on the study, conducted as part of the Infant Brain Imaging Study (IBIS) Network, for his doctoral dissertation at UNC. He now is a postdoctoral fellow at the California Institute of Technology. The study's senior author is Joseph Piven, MD, professor of psychiatry, director of the Carolina Institute for Developmental Disabilities at UNC, and the principle investigator of the IBIS Network.

The IBIS Network consists of research sites at UNC, Children's Hospital of Philadelphia, Washington University in St. Louis, the University of Washington in Seattle, the University of Utah in Salt Lake City, and the Montreal Neurological Institute at McGill University, and the University of Alberta are currently recruiting younger siblings of children with autism and their families for ongoing research.

"Difficulty in shifting gaze and attention that we found in 7-month-olds may be a fundamental problem in autism," Piven said. "Our hope is that this finding may help lead us to early detection and interventions that could improve outcomes for individuals with autism and their families."

The study included 97 infants: 16 high-risk infants later classified with an autism spectrum disorder (ASD), 40 high-risk infants not meeting ASD criteria (i.e., high-risk-negative) and 41 low-risk infants. For this study, infants participated in an eye-tracking test and a brain scan at 7 months of age a clinical assessment at 25 months of age.

The results showed that the high-risk infants later found to have ASD were slower to orient or shift their gaze (by approximately 50 miliseconds) than both high-risk-negative and low-risk infants. In addition, visual orienting ability in low-risk infants was uniquely associated with a specific neural circuit in the brain: the splenium of the corpus callosum. This association was not found in infants later classified with ASD.

The study concluded that atypical visual orienting is an early feature of later emerging ASD and is associated with a deficit in a specific neural circuit in the brain.


'/>"/>

Contact: Tom Hughes
tahughes@unch.unc.edu
919-966-6047
University of North Carolina Health Care
Source:Eurekalert  

Related biology news :

1. Wireless, implanted sensor broadens range of brain research
2. University of Maryland School of Medicine finds depression stems from miscommunication between brain cells
3. Pig brain models provide insights into human cognitive development
4. Computer model may help athletes and soldiers avoid brain damage and concussions
5. Tickling the brain with magnetic stimulation improves memory in schizophrenia
6. Oxfords Gero Miesenböck is awarded The Brain Prize 2013 for his pioneering work on optogenetics
7. Even mild traumatic brain injuries can kill brain tissue
8. Researchers discover workings of brains GPS system
9. How the bodys energy molecule transmits 3 types of taste to the brain
10. 1 region, 2 functions: Brain cells multitasking key to understanding overall brain function
11. Brain adds cells in puberty to navigate adult world
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Atypical brain circuits may cause slower gaze shifting in infants who later develop autism
(Date:8/23/2017)... -- The general public,s help is being enlisted in what,s thought to be ... on the human body –and are believed to affect health.  ... The Microbiome Immunity Project is the largest study ... gut. The project's goal is to help advance scientific knowledge of the ... ...
(Date:6/30/2017)... Today, American Trucking Associations announced Seeing ... and eye tracking software, became the newest member ... "Artificial intelligence and advanced sensing algorithms ... driver,s attentiveness levels while on the road.  Drivers ... fatigue and prevent potential accidents, which could lead ...
(Date:5/23/2017)...  Hunova, the first robotic gym for the rehabilitation and functional motor ... Genoa, Italy . The first 30 robots will be ... USA . The technology was developed and patented at the ... spin-off Movendo Technology thanks to a 10 million euro investment from entrepreneur ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global contract research, ... improve patient outcomes and quality of life, will now be offering its impurity ... to new regulatory requirements for all new drug products, including the finalization of ...
(Date:10/11/2017)... LINDA, CA (PRWEB) , ... October 11, 2017 ... ... to upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding ... (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ... hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” with ... adoption best practices and how Proscia improves lab economics and realizes an increase ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
Breaking Biology Technology: