Navigation Links
Atomic-level snapshot catches protein motor in action
Date:11/24/2009

The atomic-level action of a remarkable class of ring-shaped protein motors has been uncovered by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) using a state-of-the-art protein crystallography beamline at the Advanced Light Source (ALS). These protein motors play pivotal roles in gene expression and replication, and are vital to the survival of all biological cells, as well as infectious agents, such as the human papillomavirus, which has been linked to cervical cancer.

James Berger, a biochemist and structural biologist who holds joint appointments with Berkeley Lab's Physical Biosciences Division and University of California Berkeley's Department of Molecular and Cell Biology, and Nathan Thomsen, a graduate student in his research group, have captured a critical action shapshot of an enzyme known as the Rho transcription termination factor. In bacteria, the Rho motor protein binds to a specific region of messenger RNA and translocates along the chain to selectively terminate transcription at discrete points along the genome.

"We have shown that the Escherichia coli Rho transcription termination factor functions like a rotary engine, much like the motors found on certain classes of propeller airplanes," says Berger. "As the motor spins, fueled by the chemical energy in ATP nucleotides, it pulls RNA strands through it's interior, an action that enables Rho to walk along RNA chains. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain."

Berger and Thomsen are the co-authors of a paper reporting the results this research that has been published in the journal Cell. The paper is titled: "Running in reverse: the structural basis for translocation polarity in hexameric helicases."

The Rho factor is a member of the hexameric helicase superfamily of enzymes - ring-shaped proteins made up of six independent subunits or "cylinders." Hexameric helicases are found in all organisms and are involved in unwinding and moving DNA and RNA strands around the cell. There are two subfamilies of hexameric helicase enzymes: AAA+ and RecA. Rho belongs to the RecA family, which is most common in bacteria. AAA+ motors are predominantly found in eukaryotes, including humans, as well as some human pathogens, such as the papillomavirus. These motors are descended from a common ancestor far back in evolution, but have distinct properties, most notably they walk along nucleic acid tracks in opposite directions. Scientists have wanted to know why the biased movement of these motors differs, Berger explains.

"If you want to understand how an enzyme works, and perhaps eventually develop therapeutic drug that will gum up the works and stop the motor from doing its job, it helps to know what the motor looks like," he says. "We are the first group to determine the crystal structure of a RecA class of hexamer helicase in a translocation state bound to both its nucleic acid track and ATP. In doing so, we fortuitously caught the motor in the act of tracking along an RNA chain."

Berger and Thomsen solved the structure of this Rho protein motor using the protein crystallography capabilities of ALS Beamline 8.3.1. The ALS is an electron synchrotron designed to accelerate electrons to energies of nearly two billion electron volts (GeV) and focus them into a tight beam around a storage ring. Beams of ultraviolet and x-ray light are extracted from this electron beam through the use of either bending, wiggler or undulator magnetic devices. These light beams are a hundred million times brighter than those from the best x-ray tubes. ALS Beamline 8.3.1 is powered by a superconducting bend magnet, or "superbend," and has experimental facilities that offer both multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography capabilities.

"The high brightness of the x-ray beams and the experimental capabilities at Beamline 8.3.1 were critical to our success," says Berger, one of the scientific spokespersons for the beamline.

What Berger and Thomsen found from their structural studies was that nucleic-acid binding elements in the interior of the Rho ring spiral around six bases of RNA. When the ATP binding sites that are coupled to this RNA segment release their chemical energy through hydrolysis of the nucleotide, they do so in a sequential manner that propagates around the hexameric ring. This chemical energy is converted into mechanical motion that dictates the rotational direction of the Rho motor based on the firing order of the ATP sites.

"Think of it like the cylinders in a radial engine," Berger says. "The fuel and intake come in from one side, leading to motions that cause the cylinders to spin around a central RNA camshaft. However, because the cylinders actually lie out of plane, they walk along the camshaft as they move."

In their study, Berger and Thomsen found that nature has evolved a similar rotary mechanism for the papillomavirus E1 protein, an AAA+ family hexameric helicase. Their analysis showed that E1 motor moves in the opposite direction along a nucleic chain because the rotational firing order of ATP sites is actually reversed. Determining the molecular structure of protein motors and learning how they operate is critical not only to basic understanding of the molecular principles that control the cell, but also to aiding pharmaceutical drug discovery efforts.

"DNA and RNA are large and cumbersome macromolecular polymers which present a challenge to the molecular machines that need to access their genetic information," says Berger. "There have been two other proposed models for these protein motors in addition to the rotary, one a type of putt-putt motor, in which all the active binding elements hydrolyze ATP simultaneously, and the other a stochastic model, whereby ATP sites are fired at random. We've shown that RecA-style motors use the rotary model."


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Purdue researchers obtain a snapshot clarifying how materials enter cells
2. Structural biology scores with protein snapshot
3. Protein chatter linked to cancer activation
4. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
5. Researchers identify proteins involved in new neurodegenerative syndrome
6. Low levels of key protein may indicate pancreatic cancer risk
7. Structure of 450 million year old protein reveals evolutions steps
8. Scientists retrace evolution with first atomic structure of an ancient protein
9. Specific brain protein required for nerve cell connections to form and function
10. NIH awards researcher $1.5 million new innovator grant for fruit-fly studies of prion proteins
11. Interacting protein theory awaits test from new neutron analysis tools
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Atomic-level snapshot catches protein motor in action
(Date:3/17/2016)... -- ABI Research, the leader in transformative technology ... will reach more than $30 billion by 2021, ... electronics, particularly smartphones, continue to boost the biometrics ... two billion shipments by 2021 at a 40% ... Analyst at ABI Research. "Surveillance is also gearing ...
(Date:3/11/2016)... , March 11, 2016 http://www.apimages.com ) - ... reference: Picture is available at AP Images ( http://www.apimages.com ) - ... will be used to produce the new refugee identity cards. DERMALOG ... innovations, at CeBIT in Hanover next week.   ... DERMALOG will be used to produce the new refugee identity cards. ...
(Date:3/9/2016)... HAMBURG, Germany , March 9, 2016 ... African country,s government identified that more than 23,000 public ... name or had been receiving their salary unlawfully.    ... West African country,s government identified that more than 23,000 ... recorded name or had been receiving their salary unlawfully. ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... May 27, 2016 , ... Doctors in Italy, Japan, ... studies on the BRCA-1 associated protein (BAP1) gene and its link to malignant mesothelioma. ... Click here to read the full article now. , The studies analyzed for ...
(Date:5/26/2016)... and READING, England ... Indegene ( http://www.indegene.com ), a leading global provider ... science, pharmaceutical and healthcare organisations and TranScrip ( ... scientific support throughout the product lifecycle, today announced ... launch of IntraScience.      (Logo: ...
(Date:5/26/2016)... Diego, CA (PRWEB) , ... May 26, 2016 ... ... development and manufacturing company, today announced several positive developments that position the Company ... As a result of the transaction, Craig F. Kinghorn has been appointed Chairman ...
(Date:5/25/2016)... ... May 25, 2016 , ... The Ankle Plating ... options designed to address fractures of the distal tibia and fibula. This system ... Ankle Plating System 3 is composed of seven plate families that span the ...
Breaking Biology Technology: