Navigation Links
Atmospheric measuring device for understanding smog formation
Date:11/19/2007

UPTON, NY - Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a new tool for quantitatively measuring elusive atmospheric chemicals that play a key role in the formation of photochemical smog. Better measurements will improve scientists' understanding of the mechanisms of smog formation and their ability to select and predict the effectiveness of various mitigation strategies. The Brookhaven scientists have been issued a U.S. patent for their apparatus, which is available for licensing.

The device measures atmospheric hydroperoxyl radicals - short-lived, highly reactive intermediates involved in the formation of ozone, a component of photochemical smog - in the lowest layer of Earth's atmosphere. The levels of these radicals can indicate which of a variety of chemical pathways is predominant in converting basic starting ingredients - hydrocarbons, nitrogen oxides, and water vapor - into smog in the presence of sunlight.

"Understanding the relative importance of the various pathways can help you tailor your mitigation strategies," said Brookhaven atmospheric chemist Stephen Springston, one of the inventors. "For example, are you better off spending your money reducing hydrocarbon emissions or nitrogen oxide emissions?"

"Our measurements will help predict which strategy would be most successful for a particular set of atmospheric conditions - and make modifications to the strategy as those conditions change," said co-inventor Judy Lloyd of the State University of New York at Old Westbury, who holds a guest appointment at Brookhaven Lab.

Because hydroperoxyl radicals are so reactive, getting accurate measurements is not easy. "These chemicals are so fragile you cannot take a bottle home with you," Springston said. "You have to measure them where they form, in the atmosphere, before they react and disappear."

Various groups have developed detectors for hydroperoxyl radicals, but these have been cumbersome and costly. The new device is comparatively small, lightweight, and inexpensive, has low power requirements, and gives a sensitive, fast response. It works by detecting a "glowing" signal from a chemiluminescent compound - similar to the compound that makes fireflies glow - when it reacts with the hydroperoxyl radicals in atmospheric samples fed into the device during flight.

"The chemiluminescence produced in solution creates a strong and readily detectable signal without the need for complex amplification procedures," said Lloyd.

The device has been tested in a mountaintop setting, but has not yet been deployed on an aircraft for a sampling mission. It is designed to be flown on atmospheric sampling aircraft, such as the Department of Energy's Gulfstream 1, which has been used by Brookhaven and other national laboratory scientists for a variety of atmospheric studies.


'/>"/>

Contact: Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology news :

1. Worldwide atmospheric measurements will determine the role of atmospheric fine particles
2. Device helps patients survive, regain function til transplant
3. Researchers developing device to predict proper light exposure for human health
4. IGERT fellows to design biodevices using flexible electronics
5. MIT aids creation of neural prosthetic devices
6. A study by the MUHC and McGill University opens a new door to understanding cancer
7. Understanding hypertension in African Americans proves elusive
8. Systems Biology poised to revolutionize the understanding of cell function and disease
9. Gregory Hannon wins 2007 Paul Marks Prize for contributions to understanding and treating cancer
10. Understanding, combating foodborne pathogens E. coli 0157 and salmonella
11. Researchers discover important tool in understanding differentiation in human embryonic stem cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016 Houston Methodist Willowbrook Hospital has ... Association to serve as their official health care ... Willowbrook will provide sponsorship support, athletic training services, ... coaches, volunteers, athletes and families. "We ... Association and to bring Houston Methodist quality services ...
(Date:6/23/2016)... ... , ... Supplyframe, the Industry Network for electronics hardware design ... Located in Pasadena, Calif., the Design Lab’s mission is to bring together inventors ... and brought to market. , The Design Lab is Supplyframe’s physical representation of ...
(Date:6/23/2016)... , June 23, 2016 ... Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... , the peer-reviewed journal from touchONCOLOGY, Andrew ... escalating cost of cancer care is placing an ... result of expensive biologic therapies. With the patents ...
(Date:6/23/2016)... , June 22, 2016  Amgen (NASDAQ: ... of the QB3@953 life sciences incubator to ... health. The shared laboratory space at QB3@953 was created ... a key obstacle for many early stage organizations - ... of the sponsorship, Amgen launched two "Amgen Golden Ticket" ...
Breaking Biology Technology: