Navigation Links
Assortativity signatures of transcription factor networks contribute to robustness

Dartmouth researchers explored the type and number of connections in transcription factor networks (TFNs) to evaluate the role assortativity plays on robustness in a study published in PLOS Computational Biology in August. The study found that the assortativity signature contributes to a network's resilience against mutations.

"In simulations, it seems that varying the out-out assortativity of TFN models has a greater effect on robustness than varying any of the other three types of assortativity," said Dov A. Pechenick, PhD, lead author and former researcher at the Computational Genetics Laboratory at Dartmouth College, Hanover, NH. "We determined this by varying all four types of assortativity in the signature and then measuring robustness."

Transcription factors (TFs) are proteins that initiate and regulate the expression of a gene. To achieve their genetic mission, TFs also regulate one another's expression. Individual TFs connect to each other through connections that point in or out, forming a network. The direction of the coupling indicates regulatory control; an outbound connection by one TF stipulates its control over another, whereby it turns that TF on or off with respect to gene expression.

Many such connected pairings occur in a network, and their types determine a network's assortativity, which measures whether these pairings tend to occur between TFs that have similar numbers of connections. For example, when TFs in a pairing are likely to possess similar numbers of outgoing connections, out-out assortativity is high. If they are likely to possess very different numbers of incoming connections, in-in assortativity is low. Taken together, measures for the different kinds of assortativity create a signature. According to Pechenick, "There are four types of assortativity in directed networks, and the assortativity signature is a way of looking at all four at once."

Pechenick and his Dartmouth co-authors evaluated the assortativity signatures in published TFNs of 41 distinct human cell and tissue types and found that an above average number of connected TFs had similar numbers of outgoing connections (high out-out assortativity). Furthermore, this property, more so than the other three types of assortativity, seemed to be a predictor of robustness.

"Robustness is a measure of how resilient an overall pattern of TF gene expression is over time when confronted with mutations in the regulatory instructions of these TFs. If mutations tend to change the pattern, then robustness is low. If mutations tend to have no effect on the pattern, then robustness is high," said Pechenick.

This Dartmouth study was the first to look at the assortativity signatures of TFNs and their impact on robustness. "Results suggest that measuring the assortativity signature of a TFN can tell you something about its robustness," said Pechenick. "For researchers that wish to understand and simulate biological networks, these results indicate the importance of considering assortativity."


Contact: Donna Dubuc
The Geisel School of Medicine at Dartmouth

Related biology news :

1. Epigenetic signatures direct the repair potential of reprogrammed cells
2. Biosignatures distinguish between tuberculosis and sarcoidosis
3. Oncogenic signatures mapped in TCGA a guide for the development of personalized therapy
4. Signatures of selection inscribed on poplar genomes
5. Study demonstrates cells can acquire new functions through transcriptional regulatory network
6. Transcription factor Lyl-1 critical in producing early T-cell progenitors
7. NIH backs Rice University study of delay in gene transcription networks
8. Stay-at-home transcription factor prevents neurodegeneration
9. FASEB SRC announces: Mechanism and Regulation of Prokaryotic Transcription Conference
10. Transcription factor may protect against hepatic injury caused by hepatitis C and alcohol
11. System-wide analyses have underestimated the importance of transcription in animals
Post Your Comments:
(Date:10/29/2015)... , Oct. 29, 2015   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... Tech Association (MHTA) as one of only three finalists ... "Software – Small and Growing" category. The Tekne Awards honor ... have shown superior technology innovation and leadership. ...
(Date:10/29/2015)... , Oct. 29, 2015 Daon, a global ... it has released a new version of its ... North America have already installed ... also includes a FIDO UAF certified server component ... preparing to activate FIDO features. These customers include some ...
(Date:10/29/2015)... -- Connected health pioneer, Joseph C. Kvedar , MD, ... and wellness, and the business opportunities that arise from ... of Healthy Things . Long before health and ... Kvedar, vice president, Connected Health, Partners HealthCare, was creating ... from the hospital or doctor,s office into the day-to-day ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ - ... the request of IIROC on behalf of the Toronto ... this news release there are no corporate developments that ... price. --> --> ... --> . --> Aeterna Zentaris ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software ... events in five states to develop and pitch their BIG ideas to improve health ... state are competing for votes to win the title of SAP's Teen Innovator, an ...
(Date:11/24/2015)... , November 24, 2015 ... recent market research report released by Transparency Market Research, ... expand at a CAGR of 17.5% during the period ... Testing Market - Global Industry Analysis, Size, Volume, Share, ... global non-invasive prenatal testing market to reach a valuation ...
(Date:11/24/2015)... SAN FRANCISCO , Nov. 24, 2015 /PRNewswire/ ... today announced that Emily Leproust, Ph.D., Twist Bioscience ... Piper Jaffray Healthcare Conference on December 1, 2015 ... Palace Hotel in New York City. ... . Twist Bioscience is on ...
Breaking Biology Technology: