Navigation Links
Assessing a new technique for ensuring fresh produce remains Salmonella-free
Date:9/17/2012

Researchers at the Institute of Food Research have tested a new technique to ensure fresh produce is free of bacterial contamination.

Plasmas are a mix of highly energetic particles created when gases are excited by an energy source. They can be used to destroy bacteria but as new research shows, some can hide from its effects in the microscopic surface structures of different foods.

Eating fresh fruit and vegetables is promoted as part of a healthy lifestyle, and consumers are responding to this by eating more and in a greater variety. Ensuring fruit and vegetables are free from contamination by food poisoning bacteria is crucial, as they are often eaten raw, without cooking or processing that kills off bacteria.

A move away from current chlorine-based decontamination is driving the search for new, safe ways of ensuring fresh fruit and vegetables are free from bacterial contamination without reducing quality or flavour. One technique being investigated is cold atmospheric gas plasma technology.

Plasmas can effectively inactivate microorganisms, and as they don't involve extreme conditions such as high temperature they have been suggested for use in decontaminating food surfaces without affecting the structure. Dr Arthur Thompson has been investigating how well cold atmospheric plasmas (CAP) inactivate Salmonella under different conditions and on different fresh produce foods at the Institute of Food Research, which is strategically funded by the Biotechnology and Biological Sciences Research Council.

Publishing in the journal Food Microbiology, Dr Thompson found Salmonella could be effectively inactivated by plasmas, but the length of exposure varied greatly depending on the type of produce. Other variables, such as the ambient temperature of the produce or the growth phase of the Salmonella had no significant effect. Inactivation on food surfaces took longer than on an artificial membrane filter surface.

To understand why, the researchers looked at the food surfaces with an electron microscope. At this microscopic level of detail, it was possible to see how Salmonella could 'hide' from the effects of the plasmas. Different structures, such as the bumps on the strawberries, the pores in lettuce leaves or the cell walls of potatoes create shadowed zones that block plasma reaching bacteria.

This study was conducted using a laboratory scale plasma device, used as part of ongoing research at IFR to study operational parameters and investigate precisely how cold plasma's destroy bacteria.

"The results suggest scaled up devices or combinations with other mild treatments could provide a very effective solution for destroying bacteria with little or no effect on the produce itself." said Dr Thompson. "What this study shows is that it will be important to take into account the type of food and its surface structure."


'/>"/>

Contact: Andrew Chapple
andrew.chapple@nbi.ac.uk
44-160-325-5111
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. Screening technique uncovers 5 new plant activator compounds
2. New infrared spectroscopy technique
3. NIH-funded researchers restore sense of smell in mice using genetic technique
4. Researchers develop new, less expensive nanolithography technique
5. Triage for plants: NYBG scientists develop and test rapid species conservation assessment technique
6. UI researchers develop technique to help pollution forecasters see past clouds
7. Adoption of advanced techniques could propel crop improvement
8. Transgenic technique to eliminate a specific neural circuit of the brain in primates
9. New technique allows simulation of noncrystalline materials
10. Evaluation of microscopy techniques may help scientists to better understand ancient plants
11. New stem cell technique promises abundance of key heart cells
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Assessing a new technique for ensuring fresh produce remains Salmonella-free
(Date:11/17/2016)... Global Market Watch: Primarily supported by ... Banks and Academics) market is to witness a value of ... the highest Compounded Annual Growth Rate (CAGR) of 10.75% is ... analysis period 2014-2020. North America is ... Europe at 9.56% respectively. Report ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... offering. ... The global bioinformatics market is ... Billion in 2016, growing at a CAGR of 21.1% during the ... driven by the growing demand for nucleic acid and protein sequencing, ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... 8, 2016 Eutilex Co. Ltd. today announced ... $18.9M) Series A financing. This financing round included participation ... and SNU Bio Angel. This new funding brings the ... (US $27.7M) since its founding in 2015. ... development and commercialization of its immuno-oncology programs, expand its ...
(Date:12/7/2016)... NE (PRWEB) , ... December 07, 2016 , ... ... systems integration, today announced that it has become a Wonderware Certified System Integrator ... System Integrator Partner by Schneider Electric Software. , “The System Integrator Partner certification ...
(Date:12/7/2016)... 2016  Biocom, the association for the California ... passage of 21 st Century Cures legislation in Congress. ... a 392-26 vote and in the Senate on December 7 ... Joe Panetta , president & CEO of Biocom: ... to millions of patients around the world. The measure culminates ...
(Date:12/7/2016)... ARBOR, Mich. , Dec. 7, 2016  Lycera ... modulatory medicines, announced today the initiation of a Phase ... LYC-30937- E nteric C oated, in patients with ... is estimated to affect as many as 7.5 million people ... approximately 1.5 - 3 million cases being diagnosed as ...
Breaking Biology Technology: