Navigation Links
Artificial atoms allow for magnetic resonance on individual cells
Date:2/11/2013

Researchers from the Institute of Photonic Sciences (ICFO), in collaboration with the CSIC and Macquarie University in Australia, have developed a new technique, similar to the MRI but with a much higher resolution and sensitivity, which has the ability to scan individual cells. In an article published in Nature Nanotech, and highlighted by Nature, ICFO Prof. Romain Quidant explains how this was accomplished using artificial atoms, diamond nanoparticles doped with nitrogen impurity, to probe very weak magnetic fields such as those generated in some biological molecules.

The conventional MRI registers the magnetic fields of atomic nuclei in our bodies which have been previously excited by an external electromagnetic field. The collective response of all of these atoms makes it possible to diagnose and monitor the evolution of certain diseases. However, this conventional technique has a diagnostic resolution on a millimetric scale. Smaller objects do not give enough signal to be measured.

The innovative technique proposed by the group led by Dr. Quidant significantly improves the resolution at the nanometer scale (nearly one million times smaller than the millimeter), making it possible to measure very weak magnetic fields, such as those created by proteins. "Our approach opens the door for the performance of magnetic resonances on isolated cells which will offer new sources of information and allow us to better understand the intracellular processes, enabling noninvasive diagnosis," explains Michael Geiselmann, ICFO researcher who conducted the experiment. Until now, it has only been possible to reach this resolution in the laboratory, using individual atoms at temperatures close to the absolute zero (approx. -273 degrees Celsius.)

Individual atoms are structures that are highly sensitive to their environment, with a great ability to detect nearby electromagnetic fields. The challenge these atoms present is that they are so small and volatile that in order to be manipulated, they must be cooled to temperatures near the absolute zero. This complex process requires an environment that is so restrictive that it makes individual atoms unviable for potential medical applications. Artificial atoms used by Quidant and his team are formed by a nitrogen impurity captured within a small diamond crystal. "This impurity has the same sensitivity as an individual atom but is very stable at room temperature due to its encapsulation. This diamond shell allows us to handle the nitrogen impurity in a biological environment and, therefore, enables us to scan cells" argues Dr. Quidant.

To trap and manipulate these artificial atoms, researchers use laser light. The laser works like tweezers, leading the atoms above the surface of the object to study and extract information from its tiny magnetic fields.

The emergence of this new technique could revolutionize the field of medical imaging, allowing for substantially higher sensitivity in clinical analysis, an improved capacity for early detection of diseases, and thus a higher probability for successful treatment.


'/>"/>

Contact: Albert Mundet
albert.mundet@icfo.eu
34-935-542-246
ICFO-The Institute of Photonic Sciences
Source:Eurekalert  

Related biology news :

1. Nanomaterials key to developing stronger artificial hearts
2. U. of Minn. researchers unveil first artificial enzyme created by evolution in a test tube
3. Cornell engineers solve a biological mystery and boost artificial intelligence
4. Scale-up of a temporary bioartificial liver support system described in BioResearch Open Access
5. New geometries: Researchers create new shapes of artificial microcompartments
6. High-speed video and artificial flowers shed light on mysteries of hummingbird-pollinated flowers
7. Researchers develop method to grow artificial tissues with embedded nanoscale sensors
8. Artificial intelligence helps detect subtle differences in mutant worms
9. UD partner in NIH research project to produce artificial salivary glands
10. Artificial jellyfish swims in a heartbeat
11. Liquid glucagon formulation discovered for potential use in artificial pancreas systems
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Artificial atoms allow for magnetic resonance on individual cells
(Date:1/27/2016)... CHESTER, Ohio , Jan. 27, 2016  Rite ... supplier based in West Chester, Ohio ... their award winning service staff, based in ... technical capacity and ability to provide modifications, installations and ... John Dovalina , CEO of PLUS, commented, "PLUS has ...
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
(Date:1/20/2016)... Jan. 20, 2016 A market that just ... benefit from the explosion in genomics knowledge. Learn all ... Research. A range of dynamic trends are pushing market ... personalized medicine - pharmacogenomics - pathogen evolution - next ... markets - greater understanding of the role of genetic ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... ... February 11, 2016 , ... ... new stem cell treatment clinic in Quito, Ecuador. The new facility will provide ... applications to patients from around the world. , The new GSCG clinic ...
(Date:2/10/2016)... Ky. , Feb. 10, 2016 NX ... utilizing its proprietary NeXosome® technology for early warning ... of its most recent study by Dr. ... at the Society for Maternal Fetal Medicine,s (SMFM) annual ... GA, February 1-6 th , 2016.  The presentation reported ...
(Date:2/10/2016)... plc (NYSE: AGN ) a leading global pharmaceutical ... CEO and President, will be featured as the keynote ... Capital Markets Healthcare Conference on Tuesday, February 23, 2016 ... Hotel in New York, NY . ... accessed on Allergan,s Investor Relations web site at ...
(Date:2/10/2016)... ... ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their new high-speed InGaAs ... Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS Expo on February ... standard packages feature a TO-46 metal can with active areas of 1.0mm and 1.5mm ...
Breaking Biology Technology: