Navigation Links
Are sacrificial bacteria altruistic or just unlucky?

HOUSTON, April 15, 2008 -- An investigation of the genes that govern spore formation in the bacteria B. subtilis shows that chance plays a significant role in determining which of the microbes sacrifice themselves for the colony and which go on to form spores.

B. subtilis, a common soil bacteria, is a well-known survivor. When running short of food, it can alternatively band together in colonies or encase itself in a tough, protective spore to wait for better times. In fact, B. subtilis is so good at making spores that it's often used as a model organism by biologists who study bacterial spore formation.

"It's too early to say whether B. subtilis is truly altruistic," said co-author Oleg Igoshin, assistant professor of bioengineering at Rice University. "What is clear from this is that not all bacteria are going to look and act the same, and that's something that can be overlooked when people either study or attempt to control bacteria with population-wide approaches."

For example, Igoshin said doctors and food safety engineers might need to amend general approaches aimed at controlling bacteria with more targeted methods that also account for the uncharacteristic individual.

The new results appear in the April 15 issue of Molecular Systems Biology. The experimental work, which was done by Jan-Willem Veening, currently at Newcastle University, and by other members of Oscar Kuipers' research group at the University of Groningen in the Netherlands, focused on the B. subtilis genes that regulate both spore formation and the production cycles of two proteins -- subtilisin and bacillopeptidase. These two proteins help break apart dead cells and convert them into food. They are produced and released into the surrounding environment by B. subtilis cells that are running low on food.

From previous studies, scientists know there is some overlap between genes that control the production of the two proteins and those that control spore formation.

"Only a portion of the bacteria in a colony will form spores and only portion of the bacteria produce subtilisin, and we were interested in probing the genetic basis for this," Igoshin said. "How is it decided which cells become spores and which don't?"

Igoshin, a computational biologist, used computer simulations to help decipher and interpret the team's experimental results. He said the team found that fewer than 30 percent of individuals in a colony produce large quantities of the food-converting proteins. Even though the proteins benefit all members of the colony and help some cells to become spores, the cells that produce the proteins in bulk do not form spores themselves.

"There's a feedback loop, so that cells that start producing the proteins early get a reinforced signal to keep making them," Igoshin said. "We found that it's probabilistic events -- chance, if you will -- that dictates who is early and who is late. The early ones start working for the benefit of everyone while the later ones save valuable resources to ensure successful completion of sporulation program. Many cells will end up committing to sporulation before they had a chance to contribute to protease production"

Igoshin said a key piece of evidence confirming modeling predictions came in experiments that tracked genetically identical sister cells, some of which became protein producers and some of which didn't.


Contact: Jade Boyd
Rice University

Related biology news :

1. Tomato pathogen genome may offer clues about bacterial evolution
2. Researchers mimic bacteria to produce magnetic nanoparticles
3. Marine bacterias mealtime dash is a swimming success
4. Biologists surprised to find parochial bacterial viruses
5. Evolution of root nodule symbiosis with nitrogen-fixing bacteria
6. Team probes mysteries of oceanic bacteria
7. Airborne bacteria may play large role in precipitation
8. LSU scientist finds evidence of rain-making bacteria
9. Bacteria and nanofilters -- the future of clean water technology
10. Biochemists reveal details of mysterious bacterial microcompartments
11. Invisible bacteria dupe the human immune system
Post Your Comments:
(Date:11/20/2015)... Connecticut , November 20, 2015 ... authentication company focused on the growing mobile commerce market ... CEO, Gino Pereira , was recently interviewed on ... interview will air on this weekend on Bloomberg ... Latin America . --> NXTD ) ("NXT-ID" ...
(Date:11/19/2015)... MOUNTAIN VIEW, Calif. , Nov. 19, 2015 /PRNewswire/ ... authentication market, Frost & Sullivan recognizes BIO-key with the ... Strategy Leadership. Each year, Frost & Sullivan presents this ... comprehensive product line catering to the needs of the ... which the product line meets and expands on customer ...
(Date:11/19/2015)... 2015  Although some 350 companies are actively involved ... few companies, according to Kalorama Information. These include Roche Diagnostics, ... market share of the 6.1 billion-dollar molecular testing market, ... for Molecular Diagnostic s .    ... controlled by one company and only a handful of ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions ... in five states to develop and pitch their BIG ideas to improve health and ... are competing for votes to win the title of SAP's Teen Innovator, an all-expenses ...
(Date:11/24/2015)... 2015 --> ... released by Transparency Market Research, the global non-invasive prenatal ... of 17.5% during the period between 2014 and 2022. ... Industry Analysis, Size, Volume, Share, Growth, Trends and Forecast ... market to reach a valuation of US$2.38 bn by ...
(Date:11/24/2015)... Nov. 24, 2015  Twist Bioscience, a company ... Leproust, Ph.D., Twist Bioscience chief executive officer, will ... on December 1, 2015 at 3:10 p.m. Eastern ... City. --> --> ... Twist Bioscience is on Twitter. Sign up to ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
Breaking Biology Technology: