Navigation Links
Anti-malaria drug synthesized with the help of oxygen and light
Date:1/17/2012

This release is available in German.

The most effective anti-malaria drug can now be produced inexpensively and in large quantities. This means that it will be possible to provide medication for the 225 million malaria patients in developing countries at an affordable price. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and the Freie Universitt Berlin have developed a very simple process for the synthesis of artemisinin, the active ingredient that pharmaceutical companies could only obtain from plants up to now. The chemists use a waste product from current artemisinin production as their starting substance. This substance can also be produced biotechnologically in yeast, which the scientists convert into the active ingredient using a simple yet very ingenious method.

There is an effective treatment against malaria, but it is not accessible to all of the more than 200 million people worldwide who are affected by the disease. Millions, especially in the developing world, cannot afford the combination drug preparation, which consists mainly of artemisinin. Moreover, the price for the medication varies, as this substance is isolated from sweet wormwood (Artemisia annua) which grows mainly in China and Vietnam, and varies seasonally in its availability. To make the drug affordable for at least some patients in developing countries, the Clinton Foundation, for example, subsidises its cost to the tune of several million dollars per year. Nevertheless, over one million people die of malaria each year because they do not have access to effective drugs.

This may be about to change. Peter H. Seeberger, Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and Professor of Chemistry at the Freie Universitt Berlin and his colleague Franois Lvesque have discovered a very simple way of synthesising the artemisinin molecule, which is known as an anti-malaria drug from traditional Chinese medicine and has an extremely complex chemical structure. "The production of the drug is therefore no longer dependent on obtaining the active ingredient from plants," says Peter Seeberger.

Synthesis from a by-product of artemisinin production

As a starting point, the chemists use artemisinic acid a substance produced as a hitherto unused by-product from the isolation of artemisinin from sweet wormwood, which is produced in volumes ten times greater than the active ingredient itself. Moreover, artemisinic acid can easily be produced in genetically modified yeast as it has a much simpler structure. "We convert the artemisinic acid into artemisinin in a single step," says Peter Seeberger. "And we have developed a simple apparatus for this process, which enables the production of large volumes of the substance under very controlled conditions." The only reaction sequence known up to now required several steps, following each of which the intermediate products had to be isolated laboriously a method that was far too expensive to offer as a viable alternative to the production of the drug from plants.

The striking simplification of artemisinin synthesis required not only a keen sense for an elegant combination of the correct partial reactions to enable the process to take place in a single step; it also took a degree of courage, as the chemists departed from the paths typically taken by industry up to now. The effect of the molecule, which not only targets malaria but possibly also other infections and even breast cancer, is due to, among other things, a very reactive chemical group formed by two neighbouring oxygen atoms which chemists refer to as an endoperoxide. Peter Seeberger and Franois Lvesque use photochemistry to incorporate this structural element into the artemisinic acid. Ultraviolet light converts oxygen into a form that can react with molecules to form peroxides.

800 photoreactors should suffice to cover the global requirement for artemisinin

"Photochemistry is a simple and cost-effective method. However, the pharmaceutical industry has not used it to date because it was so difficult to control and implement on a large scale," explains Peter Seeberger. In the large reaction vessels with which industrial manufacturers work, flashes of light do not penetrate deeply enough from outside and the reactive form of oxygen is not produced in sufficient volumes. The Potsdam-based scientists have succeeded in resolving this problem using an ingenious trick: They channel the reaction mixture containing all of the required ingredients through a thin tube that they have wrapped around a UV lamp. In this structure, the light penetrates the entire reaction medium and triggers the chemical conversion process with optimum efficiency.

"The fact that we do not carry out the synthesis as a one-pot reaction in a single vessel, but in a continuous-flow reactor enables us to define the reaction conditions down to the last detail," explains Peter Seeberger. After just four and a half minutes a solution flows out of the tube, in which 40 percent of the artemisinic acid has become artemisinin.

"We assume that 800 of our simple photoreactors would suffice to cover the global requirement for artemisinin," says Peter Seeberger. And it could all happen very quickly. Peter Seeberger estimates that the innovative synthesis process could be ready for technical use in a matter of six months. This would alleviate the global shortage of artemisinin and exert considerable downward pressure on the price of the associated drugs.


'/>"/>

Contact: Dr. Peter Seeberger
peter.seeberger@mpikg.mpg.de
49-331-567-9301
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Synthetic biology can help extend anti-malaria drug effectiveness
2. New nano-tool synthesized at Scripps Research Institute
3. Path to oxygen in Earths atmosphere: long series of starts and stops
4. How plants sense low oxygen levels to survive flooding
5. New evidence for the oldest oxygen-breathing life on land
6. Discovery suggests way to block fetal brain damage produced by oxygen deprivation
7. MIT: Oxygens watery past
8. Climate change could turn oxygen-free seas from blessing to curse for zooplankton
9. Oceans harmful low-oxygen zones growing, are sensitive to small changes in climate
10. Johns Hopkins researchers link cell division and oxygen levels
11. Beneficial bacteria help repair intestinal injury by inducing reactive oxygen species
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Anti-malaria drug synthesized with the help of oxygen and light
(Date:1/25/2016)... , Jan. 25, 2016  Glencoe Software, the world-leading ... and publication industries, will provide the data management solution ... (NPSC). ... Phenotypic analysis measures the ... organisms, allowing comparisons between states such as health and ...
(Date:1/20/2016)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce the attainment of record-setting ... result of the company,s laser focus on (and growing ... it,s comprehensive, easy-to-use and highly affordable cloud-based technology platform. ... MedNet growth achievements in 2015 include: , ...
(Date:1/13/2016)... , January 13, 2016 ... the addition of the  "India Biometrics ... & Forecast (2015-2020)"  report to ... ) has announced the addition of ... Market - Estimation & Forecast (2015-2020)" ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... 5, 2016 Australian-US drug discovery and development company, ... appointment of a new Chairman, Mr John O,Connor , ... immediately. James Garner , has also been ... former Acting CEO, Mr Iain Ross , will resume ... --> James Garner , has also been formally appointed ...
(Date:2/4/2016)... ... February 04, 2016 , ... Shimadzu Scientific Instruments will showcase ... demos and poster sessions, and present on the analysis of mycotoxins and medical ... 6 to 10 at the Georgia World Congress Center in Atlanta, Georgia. ...
(Date:2/4/2016)... PARK, Calif. , Feb. 4, 2016   DelMar ... biopharmaceutical company focused on the development and commercialization of new ... 18 th Annual BIO CEO & Investor Conference ... in New York, NY . ... an update on the ongoing clinical trial of VAL-083 ...
(Date:2/4/2016)... , Feb. 4, 2016 Sinovac Biotech Ltd. ... leading provider of biopharmaceutical products in China ... its board of directors received on February 4, 2016 ... from a consortium comprised of PKU V-Ming ( ... Co., Ltd., CICC Qianhai Development ( Shenzhen ...
Breaking Biology Technology: