Navigation Links
Answer to saliva mystery has practical impact
Date:6/11/2010

Researchers at Rice University, Purdue University and the Massachusetts Institute of Technology have solved a long-standing mystery about why some fluids containing polymers -- including saliva -- form beads when they are stretched and others do not.

The findings are published online this week in the journal Nature Physics.

Study co-author Matteo Pasquali, professor in chemical and biomolecular engineering at Rice, said the study answers fundamental scientific questions and could ultimately lead to improvements as diverse as ink-jet printing, nanomaterial fiber spinning and drug dispensers for "personalized medicine."

Co-author Osman Basaran, Purdue's Burton and Kathryn Gedge Professor of Chemical Engineering, said, "Any kindergartner is familiar with this beading phenomenon, which you can demonstrate by stretching a glob of saliva between your thumb and forefinger. The question is, 'Why does this beading take place only in some fluids containing polymers but not others?'"

Pasquali said, "In answering the question about why some fluids do this and others do not, we are addressing everyday processes that apply to fiber and droplet formation, not just in multibillion-dollar industrial plants but also in fluids produced in living cells."

Saliva and other complex "viscoelastic" fluids like shaving cream and shampoo contain long molecules called polymers. When a strand of viscoelastic fluid is stretched, these polymers can cause a line of beads to form just before the strand breaks.

Pasquali said the explanation for why some viscoelastic fluids form beads and others do not was decades in the making. The origins of the work can be traced to Pasquali's and Basaran's doctoral research adviser, L.E. "Skip" Scriven of the University of Minnesota. Pasquali said Scriven worked out the basics of the competition between capillary, inertial and viscous forces in flows during the 1970s and 1980s. In the mid-1990s, during his doctoral research at Minnesota, Pasquali expanded on Scriven's earlier work to include the effects of viscoelasticity, which originates in liquid microstructures and nanostructures. Finally, Pasquali's former doctoral student, Pradeep Bhat, the lead author of the new study, took up the mantle nine years ago as a Ph.D. student in Pasquali's lab and continued working on the problem for the past three years as a postdoctoral researcher in Basaran's lab at Purdue.

Bhat, Basaran and Pasquali found that a key factor in the beading mechanism is fluid inertia, or the tendency of a fluid to keep moving unless acted upon by an external force.

Other major elements are a fluid's viscosity; the time it takes a stretched polymer molecule to "relax," or snap back to its original shape when stretching is stopped; and the "capillary time," or how long it would take for the surface of the fluid strand to vibrate if plucked.

"It turns out that the inertia has to be large enough and the relaxation time has to be small enough to form beads," Bhat said.

The researchers discovered that bead formation depends on two ratios: the viscous force compared with inertial force and the relaxation time compared with the capillary time.


'/>"/>

Contact: David Ruth
druth@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology news :

1. Microbes answer more questions collectively
2. U of I researchers say foliar fungicides may not be the answer for hail-damaged corn
3. Microbial answer to plastic pollution?
4. An answer to another of lifes big questions
5. Bubble physicist counts bubbles in the ocean to answer questions about climate, sound, light
6. Studying hair of ancient Peruvians answers questions about stress
7. Are sterile mosquitoes the answer to malaria elimination?
8. Avoiding dangerous climate change: Is geo-engineering the answer?
9. Critical Zone Observatory seeks to answer climate change questions
10. All tied up: Tethered protein provides long-sought answer
11. Researcher looks for answers about unique disease-resistant gene
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... 2016 Global Market Watch: Primarily supported ... Population-Based Banks and Academics) market is to witness a value ... shows the highest Compounded Annual Growth Rate (CAGR) of 10.75% ... the analysis period 2014-2020. North America ... by Europe at 9.56% respectively. ...
(Date:11/15/2016)... Nov. 15, 2016  Synthetic Biologics, Inc. (NYSE ... focused on the gut microbiome, today announced the ... shares of its common stock and warrants to ... a price to the public of $1.00 per ... Biologics from the offering, excluding the proceeds, if ...
(Date:11/14/2016)... , Nov. 14, 2016  Based ... identification market, Frost & Sullivan recognizes FST ... Sullivan Award for Visionary Innovation Leadership. FST ... the biometric identification market by pioneering In ... solution for instant, seamless, and non-invasive verification. ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will ... AC0010 at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria ... I/II clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring ...
(Date:12/2/2016)... ... December 01, 2016 , ... Aerocom Healthcare ( ... hospitals, will present its chain-of-custody solution for tracking and securing medications at booth ... Dec. 4-8, 2016. , Aerocom has a proven solution for tracking medications via ...
(Date:12/2/2016)... ... 2016 , ... The Conference Forum has announced that the 3rd annual ... on February 1-3, 2017 at the Roosevelt Hotel in New York City. Led by ... unique 360-degree approach, which addresses the most up-to-date information regarding business aspects, clinical advancements ...
(Date:12/2/2016)... ... December 01, 2016 , ... Orthogonal, ... on their recent FDA Class II 510(k) clearance for their flagship medical device, ... commercializing remote cardiac monitoring devices that rely on cloth-based nanosensors. While other companies ...
Breaking Biology Technology: