Navigation Links
Another muscular dystrophy mystery solved; MU scientists inch closer to a therapy for patients
Date:12/7/2012

COLUMBIA, Mo. -- Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri scientists found a molecular compound that is vital to curing the disease, but they didn't know how to make the compound bind to the muscle cells. In a new study, published in the Proceedings of the National Academies of Science, MU School of Medicine scientists Yi Lai and Dongsheng Duan have discovered the missing pieces to this puzzle that could ultimately lead to a therapy and, potentially, a longer lifespan for patients suffering from the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin, a protein essential for muscle cell survival and function. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. While dystrophin is vital for muscle development, the protein also needs several "helpers" to maintain the muscle tissue. One of these "helper" molecular compounds is nNOS, which produces nitric oxide that can keep muscle cells healthy after exercise.

"Dystrophin not only helps build muscle cells, it's also a key factor to attracting nNOS to the muscles cells and helping nNOS bind to the cell and help repair it following activity," said Lai, a research assistant professor in the Department of Molecular Microbiology and Immunology. "Prior to this discovery, we didn't know how dystrophin made nNOS bind to the cells. What we found was that dystrophin has a special 'claw' that is used to grab nNOS and bring it close to the muscle cell. Now that we have that key, we hope to begin the process of developing a therapy for patients."

In their study, Lai and Duan found that two particular sections of the dystrophin gene must be present for nNOS to bind to the muscle cells. The sections of the gene, known as "repeaters 16 & 17," contain a "claw" that can grab nNOS and bring it to the muscle cells so that it will bind and repair any damage from regular use. Without this "claw," nNOS doesn't bind to the cells and the damage is not repaired, leading to further problems associated with muscular dystrophy.

The other key to this puzzle is dystrophin. If the protein is not present in the body, no "claw" exists and nNOS would never make it to the muscle cells. For years, scientists have been attempting to find ways to make the body manufacture more dystrophin, and thus get more nNOS to the muscle cells. Duan and Lai said the answer might lie elsewhere.

"Everybody, including those individuals with muscular dystrophy, has another protein known as 'utrophin,'" said Duan, a professor of molecular microbiology and immunology. "Utrophin is nearly identical to dystrophin except that it is missing repeaters 16 & 17, so it cannot attract nNOS to the muscle cells. In our study, we were able to modify utrophin so that it had the repeaters, and thus, the ability to grab nNOS and bring it to the muscle cells for repair. Our study was completed in mice; if we can do the same thing in larger animals, we could eventually have a significant therapy for humans with this devastating disease."


'/>"/>

Contact: Christian Basi
BasiC@missouri.edu
573-882-4430
University of Missouri-Columbia
Source:Eurekalert  

Related biology news :

1. Nanotherapy: Treating deadly brain tumors by delivering big radiation with tiny tools
2. Happy Fathers Day! Another reason why dads and hopeful dads should quit smoking now
3. Giving ancient life another chance to evolve
4. Flightless molecule may prevent cancer from spreading from 1 tissue to another
5. Study proves that 1 extinction leads to another
6. New genetically engineered mice aid understanding of incurable neuromuscular disease
7. Real-life spider men using protein found in venom to develop muscular dystrophy treatment
8. Low oxygen levels may decrease life-saving protein in spinal muscular atrophy
9. MDA supports Duchenne muscular dystrophy research by University of Nevada School of Medicine
10. An important breakthrough in the fight against muscular dystrophies
11. Mutations in genes that modify DNA packaging result in Facioscapulohumeral Muscular Dystrophy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Another muscular dystrophy mystery solved; MU scientists inch closer to a therapy for patients
(Date:4/11/2017)... Florida , April 11, 2017 ... a security technology company, announces the appointment of independent Directors ... Bendheim to its Board of Directors, furthering the company,s ... ... of NXT-ID, we look forward to their guidance and benefiting ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/5/2017)... KEY FINDINGS The global market ... CAGR of 25.76% during the forecast period of 2017-2025. ... for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is segmented ... The stem cell market of the product is segmented ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... ... April 28, 2017 , ... While things have been quiet for ... company and provide a new outlook for the future. As a continued effort ... management with the retirement of Mr. Siegel as CEO. With the new adjustments in ...
(Date:4/27/2017)... ... April 27, 2017 , ... ... digital pathology, today announced their digital pathology technology has the potential to eliminate ... five medical centers in The Netherlands as part of the 2017 ISBI ...
(Date:4/27/2017)... ... April 27, 2017 , ... During the course ... how testing for 1,25-Dihydroxyvitamin D can enhance clinical practice. Participants will learn the ... dihydroxyvitamin D. , Dr. Gregory Plotnikoff, senior consultant with Minnesota Personalized Medicine, will ...
(Date:4/27/2017)... ... 27, 2017 , ... The Council for Agricultural Science and ... Lusk, a consummate communicator who promotes agricultural science and technology in the public ... explains how innovation and growth in agriculture are critical for food security and ...
Breaking Biology Technology: