Navigation Links
Animal models that help translate regenerative therapies from bench to bedside

New Rochelle, NY, February 11, 2010Clinical testing and development of novel therapies based on advances in tissue engineering and regenerative medicine that will one day enable the repair and replacement of diseased or damaged human muscle, bone, tendons, and ligaments depends on the availability of good animal models. The highlights of a recent workshop that explored the need for and current status of animal models for musculoskeletal regenerative medicine are presented in a special issue of Tissue Engineering, Part B: Reviews, a peer-reviewed journal published by Mary Ann Liebert, Inc. ( The issue is available free online (

The production of specially engineered tissues to restore the function and viability of cartilage or meniscus in the knee, for example, or of degenerating intervertebral discs in the spine, will likely one day be commonplace. In the meantime, however, there is substantial need for better and standardized animal models for the development and testing of these innovative techniques. At the National Institutes of Health (NIH)-sponsored workshop "Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine," leaders in the field described available models, outlined the unmet needs, and discussed the translational pathways for clinical testing and therapeutic use.

Mark Lee, PhD, and colleagues from the U.S. Food and Drug Administration (FDA, Rockville, MD) explained how the complexity of engineered tissue constructs, often containing a combination of cells, scaffolds, and other factors, creates challenges for product characterization and manufacturing. In their paper "Considerations for Tissue-Engineered and Regenerative Medicine Product Development Prior to Clinical Trials in the United States," they provide resources and recommendations to help product developers optimize the safety and effectiveness of engineered tissues ready for testing in clinical trials.

Focusing on the challenges of applying regenerative medicine technologies to the surgical repair of torn rotator cuffs, Kathleen Derwin, PhD, and coworkers from the Cleveland Clinic in Ohio identified appropriate animal models for research, development, and testing of repair strategies. In their paper, "Preclinical Models for Translating Regenerative Medicine Therapies for Rotator Cuff Repair," they emphasize the need for discriminating preclinical models in which researchers can experiment with the materials and procedures that will ultimately be used to treat human patients.

Damage and degeneration of cartilage is a leading cause of pain and disability associated with the development of osteoarthritis. In their review article "Animal Models for Cartilage Regeneration and Repair," Michal Szczodry, MD, Stephen Bruno, and Constance Chu, MD, from the University of Pittsburgh (Pennsylvania), emphasize the value of animal studies to understand the disease process underlying joint degeneration and to develop effective treatments for cartilage injuries.

"The workshop and manuscripts they produced provide an excellent summary of the tools we have available to translate new technologies forward, toward clinical studies. They also identify the critical gaps in our current knowledge," says Anthony Ratcliffe, PhD, President and CEO of Synthasome, Inc., and a guest editor of this special issue.


Contact: Vicki Cohn
Mary Ann Liebert, Inc./Genetic Engineering News

Related biology news :

1. Animals cope with climate change at the dinner table
2. New on-off switch triggers and reverses paralysis in animals with a beam of light
3. NIFA awards funding for animal health and production research
4. Better food makes high-latitude animals bigger
5. Oral COTI-2 is effective in a second animal model of human pancreatic cancer
6. Animal behavioral studies can mimic human behavior
7. Roe of marine animals is best natural source of omega-3
9. New on-off switch triggers and reverses paralysis in animals with a beam of light
10. Master regulator found for regenerating nerve fibers in live animals
11. Geologist analyzes earliest shell-covered fossil animals
Post Your Comments:
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
(Date:5/9/2016)... -- Elevay is currently known as the ... high net worth professionals seeking travel for work   ... there is still no substitute for a face-to-face meeting. ... deal with a firm handshake. This is why wealthy ... citizenship via investment programs like those offered by the ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... of Infosys (NYSE: INFY ), and Samsung SDS, ... partnership that will provide end customers with a more ... payment services.      (Logo: ) ... financial services, but it also plays a fundamental part in ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission ... hardware projects are designed, built and brought to market. , The Design Lab ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
(Date:6/23/2016)... NEWPORT BEACH, Calif. , June 23, 2016 /PRNewswire/ ... offering new biological discoveries to the medical community, has ... and co-founder Matthew Nunez . "We ... provide us with the capital we need to meet ... funding will essentially provide us the runway to complete ...
Breaking Biology Technology: