Navigation Links
And the beat goes on...: The reliable heartbeat of hibernators
Date:5/7/2013

To date, the mechanisms underlying the maintenance of cardiac function at low body temperatures are poorly understood. Now, scientists at the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, together with colleagues at the University of Groningen in the Netherlands, have found that certain omega-3 and omega-6 fatty acids regulate the cardiac function and hence hibernation. These fatty acids control the process of maintaining a regular heartbeat, achieving lower body temperatures during hibernation and thereby ensuring the hibernator's survival.

Fatty acids regulate hibernation

In the present study Sylvain Giroud and colleagues were able to demonstrate that a specific omega-6 fatty acid, Linoleic acid (LA), regulates cardiac function and ensures a regular heartbeat during hibernation. The scientists found that hibernators show higher levels of LA in their heart tissue compared to animals in a non-hibernating state. The scientists determined the cardiac fatty acid composition of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus). They found that hamsters had higher LA levels during the cooling phase and in deep hibernation than during the active period. Additionally, the researchers investigated a specific omega-3 fatty acid, Docosahexaenoic Acid (DHA), which was significantly lower in the examined animals during hibernation. The scientists concluded that both high levels of LA and low levels of DHA are essential for hibernation. According to the study, the amounts of these specific omega-6 and -3 fatty acids in the heart can be regulated up and down, depending on the season. In summer, unlike during hibernation, high levels of DHA protect the heart from overexertion.

Activity of calcium pump in the heart

Certain fatty acids can influence the activity of so-called calcium pumps. These pumps are responsible for proper muscle contractions in the body. The researchers were able to show that animals in hibernation have higher amounts of LA in their hearts. In turn, these fatty acids activate a specific calcium pump (SERCA), thus ensuring proper cardiac contractions and the survival of hibernators at low body temperatures. A rhythmic heartbeat is dependent upon the activity of this pump. In non-hibernating animals, low temperatures can hamper the operation of the pump and lead to severe cardiac arrhythmias that can potentially lead to cardiac arrest due to an overload of calcium in the heart. High levels of LA in hibernating animals ensure a sufficiently quick calcium transport, enabling the heart to keep beating at regular intervals.

Nutrition affects hibernation

Omega-3 and omega-6 fatty acids are essential nutrients and must be obtained from food. Although the body regulates the level of fatty acids in each tissue, food supply plays an important role for hibernating animals. It is known, for instance, that wild marmots actively select plants that contain high amounts of omega-6 fatty acids during the fall to prepare for hibernation. In the present study, all animals were fed continuously with the same amounts of various fatty acids. Nevertheless, the measured amounts in the heart tissue varied, according to the physiological stage of the hamsters. As Giroud explains, "The fact that these effects of fatty acids on the calcium pump in the heart and hence on temperatures during hibernation can be detected even in animals fed identical food lead us to think that the effects of the cardiac fatty acid composition may be even stronger in free-living hibernators exposed to higher variability in food resources, or with limited access to essential fatty acids".


'/>"/>

Contact: Sylvain Giroud
Sylvain.Giroud@vetmeduni.ac.at
43-148-909-15135
University of Veterinary Medicine -- Vienna
Source:Eurekalert

Related biology news :

1. Study shows immunohistochemistry is reliable screening tool for ALK rearrangement
2. Computer simulations for multiscale systems can be faster, better, more reliable
3. Artificial jellyfish swims in a heartbeat
4. New analysis of premature infants heartbeats, breathing could be cues for leaving NICU
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/9/2016)... leader in attendance control systems is proud to announce the introduction of fingerprint attendance ... the right employees are actually signing in, and to even control the opening of ... ... ... Photo - ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with ... in this eBook by providing practical tips, tools, and strategies for clinical researchers. ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
Breaking Biology Technology: