Navigation Links
Ancient teeth bacteria record disease evolution
Date:2/17/2013

DNA preserved in calcified bacteria on the teeth of ancient human skeletons has shed light on the health consequences of the evolving diet and behaviour from the Stone Age to the modern day.

The ancient genetic record reveals the negative changes in oral bacteria brought about by the dietary shifts as humans became farmers, and later with the introduction of food manufacturing in the Industrial Revolution.

An international team, led by the University of Adelaide's Centre for Ancient DNA (ACAD) where the research was performed, has published the results in Nature Genetics today. Other team members include the Department of Archaeology at the University of Aberdeen and the Wellcome Trust Sanger Institute in Cambridge (UK).

"This is the first record of how our evolution over the last 7500 years has impacted the bacteria we carry with us, and the important health consequences," says study leader Professor Alan Cooper, ACAD Director.

"Oral bacteria in modern man are markedly less diverse than historic populations and this is thought to contribute to chronic oral and other disease in post-industrial lifestyles."

The researchers extracted DNA from tartar (calcified dental plaque) from 34 prehistoric northern European human skeletons, and traced changes in the nature of oral bacteria from the last hunter-gatherers, through the first farmers to the Bronze Age and Medieval times.

"Dental plaque represents the only easily accessible source of preserved human bacteria," says lead author Dr Christina Adler, who conducted the research while a PhD student at the University of Adelaide, now at the University of Sydney.

"Genetic analysis of plaque can create a powerful new record of dietary impacts, health changes and oral pathogen genomic evolution, deep into the past."

Professor Cooper says: "The composition of oral bacteria changed markedly with the introduction of farming, and again around 150 years ago. With the introduction of processed sugar and flour in the Industrial Revolution, we can see a dramatically decreased diversity in our oral bacteria, allowing domination by caries-causing strains. The modern mouth basically exists in a permanent disease state."

Professor Cooper has been working on the project with archaeologist and co-Leader Professor Keith Dobney, now at the University of Aberdeen, for the past 17 years. Professor Dobney says: "I had shown tartar deposits commonly found on ancient teeth were dense masses of solid calcified bacteria and food, but couldn't identify the species of bacteria. Ancient DNA was the obvious answer."

However, the team was not able to sufficiently control background levels of bacterial contamination until 2007 when ACAD's ultra-clean laboratories and strict decontamination and authentication protocols became available. The research team is now expanding its studies through time, and around the world, including other species such as Neandertals.


'/>"/>
Contact: Professor Alan Cooper
alan.cooper@adelaide.edu.au
61-406-383-884
University of Adelaide
Source:Eurekalert

Related biology news :

1. The worlds most sensitive plasmon resonance sensor inspired by ancient Roman cup
2. Ancient insects shed light on biodiversity
3. Large, ancient landslides delivered preferred upstream habitats for coho salmon
4. Climate change clues from tiny marine algae -- ancient and modern
5. Genetic mystery of Behcets disease unfolds along the ancient Silk Road
6. Analysis of Marcellus flowback finds high levels of ancient brines
7. Warming climate unlikely to cause extinction of ancient Amazon trees, study finds
8. Ancient red dye powers new green battery
9. Mining ancient ores for clues to early life
10. Ancient microbes found living beneath the icy surface of Antarctic lake
11. UIC scientists find ancient microbes in salty, ice-sealed Antarctic lake
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... 6, 2016 According to a new market ... (Polymer, Glass, Silicon), Application (Genomics, Proteomics, Capillary Electrophoresis, POC, Clinical, Environmental, ... global market is projected to reach USD 8.78 Billion by 2021 ... during the forecast period (2016 to 2021). ... ...
(Date:12/6/2016)... , Dec. 6, 2016  SRI International has ... million from the National Institutes of Health,s National ... Division of AIDS (NIAID-DAIDS) to support the manufacturing ... pre-exposure (PreP) agents. Under the seven-year contract, SRI ... development services for candidate HIV-prevention products that emerge ...
(Date:12/6/2016)... ... 2016 , ... RoviSys, a leading independent provider of comprehensive ... the opening of their new office building today. Located at 480 Green Oaks ... 200 employees focused on providing sales, engineering, and support services to customers in ...
(Date:12/5/2016)... Dec 5, 2016 Research and Markets ... - Technologies, Markets and Companies" to their offering. ... , , ... discovery using various -omics technologies such as proteomics and metabolomics. Molecular ... tests are also based on biomarker. Currently the most ...
Breaking Biology Technology: