Navigation Links
Ancient ecosystems organized much like our own
Date:4/28/2008

It was an Anomalocaris-eat-trilobite world, filled with species like nothing on today's Earth. But the ecology of Cambrian communities was remarkably modern, say researchers behind the first study to reconstruct detailed food webs for ancient ecosystems. Their paper, published this week in the open-access journal PLoS Biology, suggests that networks of feeding relationships among marine species that lived hundreds of millions of years ago are remarkably similar to those of today.

Food webs depict the feeding interactions among species within habitats--like food chains, only more complex and realistic. The discovery of strong and enduring regularities in how such webs are organized will help us understand the history and evolution of life, and could provide insights for modern ecology--such as how ecosystems will respond to biological extinctions and invasions.

A multidisciplinary group of scientists led by ecologist Jennifer Dunne of the Santa Fe Institute in Santa Fe, New Mexico and the Pacific Ecoinformatics and Computational Ecology Lab in Berkeley, California, studied the food webs of sea creatures preserved in rocks from the Cambrian, when there was an explosion of diversity of multicellular organisms--including early precursors to today's species as well as many strange animals that were evolutionary dead ends. Report co-author Richard Williams of Microsoft Research in Cambridge, UK, developed the cutting edge "Network3D" software that was used for analysis and visualization of the food webs.

The researchers compiled data from the 505 million-year-old Burgess Shale in British Columbia, Canada and the even earlier Chengjiang Shale of eastern Yunnan Province, China, dating from 520 million years ago. Both fossil-rich assemblages are unusual because they have exquisitely preserved soft-body parts for a wide range of species. They determined who was eating whom by piecing together a variety of clues. There was the occasional smoking gun, such as fossilized gut contents in the carnivorous, cannibalistic priapulid worm Ottoia prolifica. However, in most cases, feeding interactions were inferred from where species lived and what body parts they had. For example, grasping claws, swimming lobes, big eyes, and toothy mouthparts suggest that Anomalocaris canadensis, a large, unusual organism with no modern descendents, was a formidable predator of trilobites and other arthropods, consistent with bite marks found on some fossils.

To compare the organization of Cambrian and recent ecosystems, the team used methods for studying network structure, including new approaches for analyzing uncertainty in the fossil data. "Paleontologists have long known that food webs were important but we have lacked a rigorous method for studying them in deep time," comments co-author and paleontologist Doug Erwin of the Santa Fe Institute and the Smithsonian Institution. "We have shown that we can reconstruct ancient food webs and compare them to modern webs, opening up new avenues of paleoecology. We were surprised to see that most aspects of the basic structure of food webs seem to have become established during the initial explosion of animal life."

The Cambrian food webs share many similarities with modern webs, such as how many species are expected to be omnivores or cannibals, and the distribution of how many types of prey each species has. Such regularities, and any differences, become apparent only when variation in the number of species and links among webs is accounted for. "There are a few intriguing differences with modern webs, particularly in the earlier Chengjiang Shale web. However, in general, it doesn't seem to matter what species, or environment, or evolutionary history you've got, you see many of the same sorts of food-web patterns," explains Dunne.

"What we don't know," Dunne adds, "is why food webs from different habitats and across deep time share so many regularities. It could be that species-level evolution leads to stable community-level patterns, for example by limiting the number of species with many predators through selective pressures that result in extinctions or development of predator defences. Or, patterns may reflect dynamically persistent configurations of many interacting species, or fundamental physical constraints on how resources flow through ecological networks."

Answering such questions will break new ground at the intersection of ecology, evolution and physics. And it may provide valuable insights into present-day ecology. As Williams points out, "This research is an excellent example of how computational methods can be used as part of an inter-disciplinary study to help produce novel results. By getting a better idea of how ecosystems behaved in the past, we may better comprehend and mitigate what is happening to ecosystems today and in the future."


'/>"/>

Contact: Natalie Bouaravong
press@plos.org
415-568-3445
Public Library of Science
Source:Eurekalert  

Related biology news :

1. Scientists retrace evolution with first atomic structure of an ancient protein
2. CU-Boulder team discovers first ancient manioc fields in Americas
3. Ancient organisms discovered in Canadian gold mine
4. Amber specimen captures ancient chemical battle
5. Ancient whale fall from Californias Año Nuevo Island one of youngest, most complete known
6. Ancient whale fall from Californias Ao Nuevo Island one of youngest, most complete known
7. 454 Sequencing: Science paper describes a novel, highly efficient method of sequencing ancient DNA
8. Newfound ancient African megadroughts may have driven the evolution of humans and fishes
9. Ancient amphibians left full-body imprints
10. Scientists melt million-year-old ice in search of ancient microbes
11. Ancient fish bones reveal impacts of global warming beneath the sea
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Ancient ecosystems organized much like our own
(Date:1/4/2017)... -- For the thousands of attendees at this year,s International Consumer Electronics Show ... biometric measurement devices and services, will be featuring its new line of ... Medical,s special CES Exhibit Suite , the new upper arm and ... WellnessConnected product platform.  Continue ... ...
(Date:12/22/2016)... , Dec. 20, 2016  As part of its longstanding ... leading personal genetics company, recently released its latest children,s book, ... The book focuses on the topics of inheritance and variation ... Standards (NGSS) taught in elementary school classrooms in the US. ... series by illustrator Ariana Killoran , whose previous book ...
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell ... sensor technology, and STMicroelectronics (NYSE: STM), a ... of electronics applications, announced today the launch of ... for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, SensorTile ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... ... January 17, 2017 , ... ... Drug Safety Technology Consortium™ (SafeTEC™), $3 million in investment towards 15+ TEC Validation ... tools and assays, and their applicability in drug safety assessment, for the industry ...
(Date:1/16/2017)... NY (PRWEB) , ... January 16, 2017 , ... ... New Jersey laws precedential publication its decision on the appeal filed by India-based ... lawsuit of breach of contract against DPCL and one of its Dishman Group’s ...
(Date:1/14/2017)... , Jan. 13, 2017  The Alliance for ... in response to FDA final guidance on ... its continued leadership in emphasizing the importance of distinct ... keenly aware of the benefits biosimilars will bring to ... Yet the portion of the Guidance dealing ...
(Date:1/13/2017)... Island, NY (PRWEB) , ... January 13, 2017 ... ... teamed up with several companies to offer its customers three new solutions for ... probe would come in handy if a customer has an oddly-shaped sample that ...
Breaking Biology Technology: