Navigation Links
An inside look at carnivorous plants
Date:4/2/2013

When we imagine drama playing out between predators and prey, most of us picture stealthy lions and restless gazelle, or a sharp-taloned hawk latched on to an unlucky squirrel. But Ben Baiser, a post-doctoral fellow at the Harvard Forest and lead author of a new study in Oikos, thinks on a more local scale. His inter-species drama plays out in the humble bogs and fens of eastern North America, home to the carnivorous pitcher plant, Sarracenia purpurea. "It's shocking, the complex world you can find inside one little pitcher plant," says Baiser.

A pitcher plant's work seems simple: their tube-shaped leaves catch and hold rainwater, which drowns the ants, beetles, and flies that stumble in.

But the rainwater inside a pitcher plant is not just a malevolent dunking pool. It also hosts a complex system of aquatic life, including wriggling mosquito, flesh fly, and midge larvae; mites; rotifers; copepods; nematodes; and multicellular algae. These tiny organisms are crucial to the pitcher plant's ability to process food. They create what scientists call a 'processing chain': when a bug drowns in the pitcher's rainwater, midge larvae swim up and shred it to smaller pieces, bacteria eat the shredded pieces, rotifers eat the bacteria, and the pitcher plant absorbs the rotifers' waste.

But that's not the whole story. Fly larvae are also eating the rotifers, midge larvae, and each other, and everybody eats bacteria. It's a complex food web that shifts on the order of seconds.

Aaron Ellison, a co-author on the new study and senior ecologist at the Harvard Forest, says the pitcher plant food web is an ideal model for understanding larger food webswith top predators like wolvesthat change over a longer period of time. He points out, "With pitcher plants, you can hold the whole food web in your hand. The vast number of pitcher plants in one bog provide endless opportunities for detailed experiments on how food webs work, not only in pitcher plants, but also in bigger ecosystems that are harder to manipulate, like ponds, lakes, or oceans."

With funding from the National Science Foundation, the research team traveled to bogs in British Columbia, Quebec City, and Georgiathe full extent of the plant's rangeto analyze the aquatic food webs from 60 pitcher plants. They found 35 different types of organisms inside, with a large contingent of bacteria counting as just one type. Then, says Baiser, "We wanted to know: how did we get different food webs in individual pitchers from the same species pool? What caused these food webs to form the way they did?"

A few well-established scientific models predict how food webs form based on a ranked system of ecosystem factors. For the Oikos study, Baiser and his team checked their real-world observations against those models. He explains: "Say you've got a bunch of lakes. And you've got a big bucket holding all the species that can live in those lakes. When you dump out the bucket, which creatures end up in which lake? What matters more: the size of the lake, or the fact that predator species X is there, too? Or is it random? Those models help us tease those factors apart."

According to the Oikos study, the way pitcher plant food webs assemble is not random. In fact, it seems the predator-prey interactions are of key importance. "You take out one species, and that affects everything else," says Baiser.


'/>"/>

Contact: Clarisse Hart
hart3@fas.harvard.edu
978-756-6157
Harvard University
Source:Eurekalert

Related biology news :

1. Cholesterol rafts deliver drugs inside cancer cells
2. New monoclonal antibody developed that can target proteins inside cancer cells
3. Ovarian tumor, with teeth and a bone fragment inside, found in a Roman-age skeleton
4. Pressure switch inside the head
5. Deep inside the body, tiny mechanical microscope
6. Bacterial community inside the plant root
7. A step toward minute factories that produce medicine inside the body
8. Seeing inside tissue
9. Understanding faults and volcanics, plus life inside a rock
10. Spanish researcher releases a video showing a beetle from the inside
11. Key to immune system disease could lie inside the cheek
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
(Date:6/21/2016)... , June 21, 2016 NuData ... the new role of principal product architect and ... the director of customer development. Both will report ... technical officer. The moves reflect NuData,s strategic growth ... response to high customer demand and customer focus ...
(Date:6/15/2016)... 15, 2016 Transparency Market ... Recognition Market by Application Market - Global Industry Analysis Size ... to the report, the  global gesture recognition market ... and is estimated to grow at a CAGR ... 2024.  Increasing application of gesture recognition ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... GUELPH, ON , June 27, 2016 /PRNewswire/ - BIOREM ... it has been advised by its major shareholders, Clean ... LP, United States based venture ... common shares of Biorem (on a fully diluted, as ... for the disposition of their entire equity holdings in ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... bring innovative medical technologies, services and solutions to the healthcare market. The company's ... of various distribution, manufacturing, sales and marketing strategies that are necessary to help ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/23/2016)... ... 2016 , ... Mosio, a leader in clinical research patient ... and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the hurdle ... and strategies for clinical researchers. , “The landscape of how patients receive and ...
Breaking Biology Technology: