Navigation Links
An increase in temperature by 2050 may be advantageous to the growth of forage plants
Date:7/23/2014

A 2C increase in temperature around the world by 2050, according to one of the scenarios predicted by the Intergovernmental Panel on Climate Change (IPCC), may be advantageous to the physiology and the biochemical and biophysical processes involved in the growth of forage plants such as Stylosanthes capitata Vogel, a legume utilized for livestock grazing in tropical countries such as Brazil.

The conclusion is from a study carried out by researchers in the Department of Biology at the Ribeiro Preto Faculty of Philosophy, Sciences and Languages and Literature at the University of So Paulo (USP).

The outcome of a thematic project conducted under the FAPESP Research Program on Global Climate Change (PFPMCG), the study has just been published in the journal Environmental and Experimental Botany.

"The 2C increase in temperature in the environment in which Stylosanthes capitata Vogel was experimentally cultivated promoted photosynthesis, in addition to increasing the leaf area and biomass of the plant," said Carlos Alberto Martinez, project coordinator and first author of the study.

The thematic project coordinated by Martinez involves researchers from the University of Illinois, Columbia University and the US Department of Agriculture (USDA), in addition to the Consiglio Nazionale delle Ricerche of Italy, the Universitat de Barcelona in Spain, and, in Brazil, the Federal University of So Carlos (UFSCar), the So Paulo State University (Unesp) and the North Fluminense State University (UENF), as well as the Cena at USP, the Botanical Institute and Embrapa.

According to Martinez, Stylosanthes capitata Vogel is a major forage legume in tropical and subtropical regions all over the world. This plant species is highly drought resistant and able to grow in sandy environments.

With global climate change, it is estimated that a moderate temperature increase of slightly greater than 2C could have damaging effects on the plant's physiology and growth under cultivation in tropical environments such as Brazil.

To test these hypotheses, the researchers conducted an experiment in which they cultivated plants in open fields, in a normal-temperature environment, and in a temperature-controlled area using a temperature free-air controlled enhancement system known as T-FACE.

The system comes equipped to control heat emission from the crown of the plants through infrared heaters that enable the temperature of the growing environment to remain at a steady 2C over ambient temperature.

After cultivating the plants with these temperature differences for 30 days, the researchers measured photosynthetic energy dissipation and conducted aboveground biochemical and biomass analyses.

The results of the measurements and analyses indicated that a temperature increase of approximately 2C was able to improve the plants' photosynthetic activity and level of antioxidant protection.

In addition, there was a 32% increase in the leaf area index and a 16% increase in aboveground biomass production compared with plants grown at normal temperature, according to Martinez.

"The increase in temperature during the period of the experiment was favorable for the development of the biochemical and biophysical processes involved in plant growth," he stated.

According to Martinez, some possible explanations for the increase in photosynthetic activity, in addition to the leaf area index and biomass production from samples of Stylosanthes capitata that experienced temperature increases, were the plant's thermal and photosynthetic acclimatization.

The plant adjusted its physiology to not only handle the potentially stressful increase in temperature during its growth phase but also conduct photosynthesis more efficiently and even increase growth under the new climate conditions.

"The results of the study indicated that a temperature increase of up to 2C could be advantageous for growth of some species of tropical plants, such as Stylosanthes capitata Vogel," Martinez stated.

"We need to clarify the effects that warming will have on the reproductive phase to detect the possible impacts increased temperatures will have on flowering, pollination, fruit development and other developmental processes of these plants," she said.

In another experiment, the researchers cultivated the forage plant Panicum maximum at a temperature 2C above normal, at a carbon concentration of 600 parts per million (ppm), equivalent to twice the amount there is today, an amount that is expected to be reached by 2050, according to projections from the IPCC.

The researchers found that there was less partitioning of biomass to the leaves relative to the stem of plants cultivated under these conditions.

Similar results were obtained by researchers at the Center for Nuclear Energy in Agriculture (Cena) at the Luiz de Queiroz College of Agriculture (Esalq) of USP, Piracicaba campus in an experiment conducted using Brachiaria decumbens, a common grass found on coffee plantations and the major forage plant in Brazil, commonly known as signal grass.

By cultivating the plant in an environment with 200 ppm carbon above current levels in a FACE system set up at the Embrapa Environmental Division in Jaguarina, in inland So Paulo State, the researchers observed an increase in the production of stems and a decrease in biomass in the leaves of the plant.

"This could have a series of implications for the use of this plant as a forage plant found in over 80 million hectares of Brazilian pastureland," said Raquel Ghini, researcher at the Embrapa Environmental Division and one of the study's authors.

According to the assessment by Martinez, the potential impact of global climate change on plants used as pastureland needs to be investigated because plants represent the main food source for cattle in countries such as Brazil one of the only countries in the world that produce meat and milk through the extensive farming of livestock, i.e., through livestock farming in pastures.

If climate change affects the yield of tropical crops and pastureland, there will be significant economic consequences for Brazil and for the world's food production, she said.

"The impacts of climate change on pasture areas are very serious and are already occurring," said Martinez. "The solution for cultivating pastures in drought-susceptible areas may be through irrigation or the use of drought-resistant species that can adapt to climate changes," the researcher told.


'/>"/>

Contact: Samuel Antenor
samuel@fapesp.br
55-113-838-4381
Fundao de Amparo Pesquisa do Estado de So Paulo
Source:Eurekalert

Related biology news :

1. Increase in Arctic shipping poses risk to marine mammals
2. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
3. Fertilizer use responsible for increase in nitrous oxide in atmosphere
4. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
5. Study finds soda consumption increases overall stroke risk
6. Scientists have discovered genes that increase the risk of osteoporosis and fractures
7. Family history of liver cancer increases risk of developing the disease
8. Research shows how PCBs promote dendrite growth, may increase autism risk
9. Increased fructose consumption may deplete cellular energy in patients with obesity and diabetes
10. NIH-led study finds genetic test results do not trigger increased use of health services
11. Flapping protective wings increase lift
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2016)... 2016  IMPOWER physicians supporting Medicaid patients in ... clinical standard in telehealth thanks to a new partnership ... platform, IMPOWER patients can routinely track key health measurements, ... index, and, when they opt in, share them with ... a local retail location at no cost. By leveraging ...
(Date:3/22/2016)... , March 22, 2016 ... report "Electronic Sensors Market for Consumer Industry by Type ... Others), Application (Communication & IT, Entertainment, Home ... Global Forecast to 2022", published by MarketsandMarkets, ... expected to reach USD 26.76 Billion by ...
(Date:3/15/2016)... , March 15, 2016 ... report published by Transparency Market Research "Digital Door Lock Systems ... Forecast 2015 - 2023," the global digital door lock systems ... Mn in 2014 and is forecast to grow at a ... of micro, small and medium enterprises (MSMEs) across the world ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... Lady had ... she tore her cruciate ligament in her left knee. Lady’s owner Hannah sought the ... central Florida board-certified veterinary surgeon, to repair her cruciate ligament and help with the ...
(Date:5/24/2016)... ... May 24, 2016 , ... Media ... The new Media Cybernetics corporate branding reflects a results-driven revitalization for a company ... analysis. The re-branding components include a crisp, refreshed logo and a new web ...
(Date:5/23/2016)... and LONDON , May 23, 2016 ... Could See Frontage Boost Efficiency by 40% - Frontage ... - Frontage Enforce Quality, Compliance and Traceability Within the Bioanalytical ... with labs in the United States and ... to be deployed across its laboratory facilities. In addition to ...
(Date:5/20/2016)... ... May 20, 2016 , ... Kablooe Design, a leading provider of product ... official 25th anniversary of the business. “We have worked hard to build long-term relationships,” ... for the privilege and honor of serving their product design and development needs through ...
Breaking Biology Technology: