Navigation Links
An essential step toward printing living tissues
Date:2/19/2014

BOSTON A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences (SEAS) creates intricately patterned 3D tissue constructs with multiple types of cells and tiny blood vessels. The work represents a major step toward a longstanding goal of tissue engineers: creating human tissue constructs realistic enough to test drug safety and effectiveness.

The method also represents an early but important step toward building fully functional replacements for injured or diseased tissue that can be designed from CAT scan data using computer-aided design (CAD), printed in 3D at the push of a button, and used by surgeons to repair or replace damaged tissue.

"This is the foundational step toward creating 3D living tissue," said Jennifer Lewis, Ph.D., senior author of the study, who is a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard University, and the Hansjrg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. Along with lead author David Kolesky, a graduate student in SEAS and the Wyss Institute, her team reported the results February 18 in the journal Advanced Materials.

Tissue engineers have tried for years to produce lab-grown vascularized human tissues robust enough to serve as replacements for damaged human tissue. Others have printed human tissue before, but they have been limited to thin slices of tissue about a third as thick as a dime. When scientists try to print thicker layers of tissue, cells on the interior starve for oxygen and nutrients, and have no good way of removing carbon dioxide and other waste. So they suffocate and die.

Nature gets around this problem by permeating tissue with a network of tiny, thin-walled blood vessels that nourish the tissue and remove waste, so Kolesky and Lewis set out to mimic this key function.

3D printing excels at creating intricately detailed 3D structures, typically from inert materials like plastic or metal. In the past, Lewis and her team have pioneered a broad range of novel inks that solidify into materials with useful electrical and mechanical properties. These inks enable 3D printing to go beyond form to embed functionality.

To print 3D tissue constructs with a predefined pattern, the researchers needed functional inks with useful biological properties, so they developed several "bio-inks" tissue-friendly inks containing key ingredients of living tissues. One ink contained extracellular matrix, the biological material that knits cells into tissues. A second ink contained both extracellular matrix and living cells.

To create blood vessels, they developed a third ink with an unusual property: it melts as it is cools, rather than as it warms. This allowed the scientists to first print an interconnected network of filaments, then melt them by chilling the material and suction the liquid out to create a network of hollow tubes, or vessels.

The Harvard team then road-tested the method to assess its power and versatility. They printed 3D tissue constructs with a variety of architectures, culminating in an intricately patterned construct containing blood vessels and three different types of cells a structure approaching the complexity of solid tissues.

Moreover, when they injected human endothelial cells into the vascular network, those cells regrew the blood-vessel lining. Keeping cells alive and growing in the tissue construct represents an important step toward printing human tissues. "Ideally, we want biology to do as much of the job of as possible," Lewis said.

Lewis and her team are now focused on creating functional 3D tissues that are realistic enough to screen drugs for safety and effectiveness. "That's where the immediate potential for impact is," Lewis said.

Scientists could also use the printed tissue constructs to shed light on activities of living tissue that require complex architecture, such as wound healing, blood vessel growth, or tumor development.

"Tissue engineers have been waiting for a method like this," said Don Ingber, M.D., Ph.D., Wyss Institute Founding Director. "The ability to form functional vascular networks in 3D tissues before they are implanted not only enables thicker tissues to be formed, it also raises the possibility of surgically connecting these networks to the natural vasculature to promote immediate perfusion of the implanted tissue, which should greatly increase their engraftment and survival".

In addition to Lewis and Kolesky, the Wyss Institute research team also included Ryan L. Truby, A. Sydney Gladman, Travis A. Busbee, SEAS graduate students, and Kimberly A. Homan, Ph.D., a postdoctoral fellow at SEAS. The work was funded by the Wyss Institute for Biologically Inspired Engineering and the Harvard Materials Research Science and Engineering Center.


'/>"/>

Contact: Dan Ferber
dan.ferber@wyss.harvard.edu
617-432-1547
Wyss Institute for Biologically Inspired Engineering at Harvard
Source:Eurekalert  

Related biology news :

1. Bacterial shock to recapture essential phosphate
2. Water, water everywhere - but is it essential to life?
3. New book on stereology by Mark West is essential reading for neurobiologists
4. Study details essential role of trust in agricultural biotech partnerships
5. Nature study reveals loss of essential blood cell gene leads to anemia
6. Scientists discover structure of protein essential for quality control, nerve function
7. Essential informatics methods and tools for analyzing the explosion of NGS data
8. Sex and gender competency essential to medical care
9. Study points to essential role of IL-22 in lung repair after the flu
10. CNIO researchers identify a new gene that is essential for nuclear reprogramming
11. Breakthrough research of essential molecule reveals important targets in diabetes and obesity
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
An essential step toward printing living tissues
(Date:6/9/2016)... ISTANBUL , June 9, 2016  Perkotek an innovation leader in attendance control ... to seamlessly log work hours, for employers to make sure the right employees are ... Logo - http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:5/24/2016)... 2016 Ampronix facilitates superior patient care by providing unparalleled technology to leaders ... is the latest premium product recently added to the range of products distributed by ... ... ... LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 ... 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 Published recently ... peer-reviewed journal from touchONCOLOGY, Andrew D Zelenetz ... of cancer care is placing an increasing burden ... expensive biologic therapies. With the patents on many ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining ... Chicago. The result of a collaboration among several companies with expertise in toolholding, ...
(Date:6/22/2016)... DUBLIN , June 22, 2016 Research ... and Global Markets" report to their offering. ... $39.4 billion in 2014 from $29.3 billion in 2013. The market ... (CAGR) of 13.8% from 2015 to 2020, increasing from $50.6 billion ... and projected product forecasts during the forecast period (2015 to 2020) ...
(Date:6/22/2016)... SAN DIEGO , June 22, 2016   ... the first pluripotent stem cell-derived islet replacement therapy for ... two presentations at ISSCR 2016 Annual Meeting.  ISSCR 2016, ... 22nd to 25th at Moscone West in San Francisco.  ... Details of the presentations are as follows:Event: , Focus ...
Breaking Biology Technology: