Navigation Links
An economical, effective and biocompatible gene therapy strategy promotes cardiac repair
Date:7/6/2012

Dr Changfa Guo, Professor Chunsheng Wang and their co-investigators from Zhongshan hospital Fudan University, Shanghai, China have established a novel hyperbranched poly(amidoamine) (hPAMAM) nanoparticle based hypoxia regulated vascular endothelial growth factor (HRE-VEGF) gene therapy strategy which is an excellent substitute for the current expensive and uncontrollable VEGF gene delivery system. This discovery, reported in the June 2012 issue of Experimental Biology and Medicine, provides an economical, feasible and biocompatible gene therapy strategy for cardiac repair.

Transplantation of VEGF gene manipulated mesenchymal stem cells (MSCs) has been proposed as a promising therapeutic method for cardiac repair after myocardium infarction. However, the gene delivery system, including the VEGF gene and delivery vehicle, needs to be optimized. On one hand, long-term and uncontrollable VEGF over-expression in vivo has been observed to lead to hemangioma formation instead of functional vessels in animal models. On the other hand, though non-viral gene vector can circumvent the limitations of virus, drawbacks of the current non-viral vectors, such as complex synthesis procedure, limited transfection efficiency and high cytotoxicity, still needs to be overcome.

Co-investigators, Drs. Kai Zhu and Hao Lai, said "Hypoxia response elements were inserted into the promoter region of VEGF gene to form HRE-VEGF, which provided a safer alternative to the conventionally available VEGF gene". "The HRE-VEGF up-regulates gene expression under hypoxic conditions caused by ischemic myocardium and turns it off under normoxia condition when the regional oxygen supply is adequate."

The hPAMAM nanoparticles, which exhibit high gene transfection efficiency and low cytotoxicity during the gene delivery process, can be synthesized by a simpler and more economical one-step/pot polymerization technique. Drs. Zhu and Lai, said "Using the hPAMAM based gene delivery approach, our published and unpublished results explicitly demonstrated that it was an economical, effective and biocompatible gene delivery vehicle".

Dr Guo concluded that "Treatment with hPAMAM-HRE-VEGF transfected MSCs after myocardium infarction improved the myocardial VEGF level, which improved graft MSC survival, increased neovascularization and ultimately improved heart function. And this novel VEGF gene delivery system may have clinical relevance for tissue repair in other ischemic diseases".

Dr. Steve Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Guo and colleagues have provided an exciting new nanoparticle based gene therapy for cardiac repair. This novel approach has great promise for repair of the heart after myocardial infarction."


'/>"/>

Contact: Dr. Changfa Guo
guo.changfa@zs-hospital.sh.cn
Society for Experimental Biology and Medicine
Source:Eurekalert

Related biology news :

1. Novel discovery by NUS scientists paves the way for more effective treatment of cancers
2. Lab tests show arthritis drug effective against global parasite
3. As deadly cat disease spreads nationally, MU veterinarian finds effective treatment
4. Urgent research needed to determine most effective follow-up care for lung cancer patients
5. New discovery may lead to effective prevention and treatment of graft-versus-host dsease
6. More effective method of imaging proteins
7. Scripps Research Institute Scientists Develop Alternative to Gene Therapy
8. Delivery of gene-therapy for heart disease boosted 100-fold; now in 100-patient trial
9. Gene therapy for hearing loss: Potential and limitations
10. New data suggests interferon-free therapy around the corner for HCV patients
11. Nanobubbles plus chemotherapy equals single-cell cancer targeting
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
(Date:3/30/2017)... 2017 Trends, opportunities and forecast in this ... technology (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, ... end use industry (government and law enforcement, commercial and ... and others), and by region ( North America ... Asia Pacific , and the Rest of the ...
(Date:3/28/2017)... March 28, 2017 The report ... (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), ... - Global Forecast to 2022", published by MarketsandMarkets, the ... and is projected to reach USD 75.64 Billion by ... 2022. The base year considered for the study is ...
Breaking Biology News(10 mins):
(Date:5/22/2017)... ... May 22, 2017 , ... ... it is exhibiting in booth B2 at the Association for Pathology Informatics ... , In addition to demonstrating its Cancer Diagnostic Cockpit and Consultation Portal, ...
(Date:5/21/2017)... (PRWEB) , ... May 20, 2017 , ... ... that helps avoid the lengthy trial and error process by finding the right ... It can also strengthen the doctor-patient relationship through a personalized approach to treatment. ...
(Date:5/19/2017)... PA (PRWEB) , ... May 19, 2017 , ... ... its QED Proof-of-Concept Program. Academic researchers with technologies ripe for commercialization, and ... New Jersey and Delaware, are encouraged to submit proposals. QED, now in its ...
(Date:5/18/2017)... (PRWEB) , ... May 18, 2017 , ... ... activities. The Tapas Cooking Challenge is a two-hour team-building package designed for ... menu created by Chef Jodi Abel, which include items, such as Blackened Shrimp ...
Breaking Biology Technology: