Navigation Links
An 'attractive' man-machine interface
Date:1/8/2008

Researchers at Childrens Hospital Boston have developed a new nanobiotechnology that enables magnetic control of events at the cellular level. They describe the technology, which could lead to finely-tuned but noninvasive treatments for disease, in the January issue of Nature Nanotechnology (published online January 3).

Don Ingber, MD, PhD, and Robert Mannix, PhD, of Childrens program in Vascular Biology, in collaboration with Mara Prentiss, PhD, a physicist at Harvard University, devised a way to get tiny beads 30 nanometers (billionths of a meter) in diameter to bind to receptor molecules on the cell surface. When exposed to a magnetic field, the beads themselves become magnets, and pull together through magnetic attraction. This pull drags the cells receptors into large clusters, mimicking what happens when drugs or other molecules bind to them. This clustering, in turn, activates the receptors, triggering a cascade of biochemical signals that influence different cell functions.

The technology could lead to non-invasive ways of controlling drug release or physiologic processes such as heart rhythms and muscle contractions, says Ingber, the studys senior investigator. More importantly, it represents the first time magnetism has been used to harness specific cellular signaling systems normally used by hormones or other natural molecules.

This technology allows us to control the behavior of living cells through magnetic forces rather than chemicals or hormones, says Ingber. It may provide a new way to interface with machines or computers in the future, opening up entirely new ways of controlling drug delivery, or making detectors that have living cells as component parts. Weve harnessed a biological control system, but we can control it at will, using magnetic forces.

In a demonstration involving mast cells (a kind of cell in the immune system), Ingber and Mannix showed that the beads, when bound to cell receptors and exposed to a magnetic field, were able to stimulate an influx of calcium into the cells. (Calcium influx is a fundamental signal used by nerve cells to initiate nerve conduction, by heart and muscle cells to stimulate contractions and by other cells for secretion.) Magnetic fields alone, without the beads, had no effect.

The beads 30-nm size (with an inner 5-nm particle) provides the optimal crystal geometry to make them superparamagnetic able to be magnetized and demagnetized over and over, notes Mannix, who shares first authorship of the paper with Sanjay Kumar, MD, PhD of Childrens. (Kumar is now a faculty member in Bioengineering at the University of California at Berkeley.) To give a sense of scale, one nanometer is to a meter (about a yard) as one blueberry is to the diameter of the Earth.

The beads were made to attach to the mast-cell receptors by pre-coating them with antigens; these antigens then bound to antibodies that coated the receptors, similar to the way antibodies bind to antigens in the immune system. Our goal was to have one antigen coating each bead, so that each bead would bind to just one receptor, Mannix says.

As an accompanying News & Views article notes, scaling down the interactions to single receptors demonstrates unprecedented control at the individual protein level.

Electrical stimuli have been used to influence the activity of nerve cells, but isnt effective in cells that arent electrically excitable by nature, the researchers note. The advantage of a nanomagnetic control system is that it can be used in a broad range of cell types and provides a near-instantaneous on-off switch, unlike hormones and chemicals that can take minutes to hours to act and then may linger in the body. In addition, magnets can be portable and have low power requirements, allowing their use in the military and other mobile situations.

Ingber envisions a kind of pacemaker that would involve an injection of nanoparticles into the heart that could then be controlled magnetically. You could make those cells responsive to magnetic forces that work through the skin, rather than having to do surgical implants or place wires, he speculates.

You could also have a pacemaker for muscles in different parts of your body, or a pacemaker for producing hormones or insulin, Ingber adds. If youre a diabetic, you could have cells that produce insulin put under your skin, and then inject nanoparticles that go to those cells. Then, when you have a meal and need more insulin, you could just use a magnet to cause the cells to produce more. So you wouldnt have to keep buying the drug and injecting it.

The nanomagnetic system could also interface with external instruments and computer controls that take in information from the body or the surrounding environment and activate the magnet as needed, Ingber adds.

A diabetic, for example, could have a transdermal glucose sensor that controls the magnet, which then controls the insulin production by itself. In the neonatal intensive care unit, sick newborns could have their heart and breathing rates monitored and their cells rigged to respond through magnetic stimulation, without a tangle of wires and probes. Or, on the battlefield, the magnet could trigger production of an antidote when a toxin or infectious agent is sensed in the environment.

But these examples are just theoretical. The applications are hard to define because were opening up a whole new area of control that never existed before, Ingber says.


'/>"/>

Contact: James Newton
James.Newton@childrens.harvard.edu
617-919-3110
Children's Hospital Boston
Source:Eurekalert

Related biology news :

1. Like father, like son: Attractiveness is hereditary
2. IdentiPHI Introduces Biometric Authentication Solution for Citrix Web Interface Environments
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/30/2017)... , June 30, 2017 Today, ... developer and supplier of face and eye tracking ... Featured Product provider program. "Artificial ... innovative way to monitor a driver,s attentiveness levels ... from being able to detect fatigue and prevent ...
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricity™ products, including ... EMR. These new integrations will ...
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... ... ... At its national board meeting in North Carolina, ARCS® Foundation President ... and Astronomy, has been selected for membership in ARCS Alumni Hall of Fame ... Prize in Fundamental physics for the discovery of the accelerating expansion of the universe, ...
Breaking Biology Technology: