Navigation Links
An answer to another of life's big questions
Date:2/5/2010

Monash University biochemists have found a critical piece in the evolutionary puzzle that explains how life on Earth evolved millions of centuries ago.

The team, from the School of Biomedical Sciences, has described the process by which bacteria developed into more complex cells and found this crucial step happened much earlier in the evolutionary timeline than previously thought.

Team leader and ARC Federation Fellow Trevor Lithgow said the research explained how mitochondria the power house of human and other cells, which provide complex eukaryotic cells with energy and ability to produce, divide and move - were thought to have evolved about 2000 million years ago from primitive bacteria.

"We have now come to understand the processes that drove cell evolution. For some time now the crux of this problem has been to understand how eukaryotes first came to be. The critical step was to transform small bacteria, passengers that rode within the earliest ancestors of these cells, into mitochondria, thereby beginning the evolution of more complex life-forms," Professor Lithgow said.

The team found that the cellular machinery needed to create mitochondria was constructed from parts pre-existing in the bacterium. These parts did other jobs for the bacterium, and were cobbled together by evolution to do something new and more exciting.

"Our research has crystallised with work from other researchers around the world to show how this transformation happened very early on that the eukaryotes were spawned by integrating the bacterium as a part of themselves. This process jump-started the evolution of complex life much more rapidly than was previously thought."

The research consisted of two components, the first used computers to read, compare and understand DNA sequences. From this, experiments were designed to do actual laboratory testing using a bacterium that is the closest living relative to the original ancestor of the mitochondria.

The research was published in the prestigious journal Science today.

Professor Lithgow said the latest findings were only made possible due to a gradual gathering of evidence within the scientific community and recent developments in genome sequencing. "We can now "read" with great care and insight genome sequences - the complete DNA sequence of any organism. From these sequences we find tell-tale clues to the past. Our findings are relevant to all species, including the evolution of humans," Professor Lithgow said.

"It continues to amaze that this theory, proposed in the century before the advent of molecular investigations, is so accurate on a molecular scale. This improved understanding is directly relevant to the big picture timeline for the evolution of life."

Professor Lithgow said the findings will be regarded by some scientists as controversial as many have long-held views on the process of evolution as a tinkerer. "This will surprise and may even spark debate. However our research compliments the basic rules of life. Even at the molecular level, the rules of the game are the same. Evolution drives biology to more and more complex forms," Professor Lithgow said.


'/>"/>

Contact: Samantha Blair
samantha.blair@adm.monash.edu.au
61-039-903-4841
Monash University
Source:Eurekalert

Related biology news :

1. Bubble physicist counts bubbles in the ocean to answer questions about climate, sound, light
2. Studying hair of ancient Peruvians answers questions about stress
3. Are sterile mosquitoes the answer to malaria elimination?
4. Avoiding dangerous climate change: Is geo-engineering the answer?
5. Critical Zone Observatory seeks to answer climate change questions
6. All tied up: Tethered protein provides long-sought answer
7. Researcher looks for answers about unique disease-resistant gene
8. Aurora B answers an XIST-ential question
9. New supercomputer to reel in answers to some of Earths problems
10. Contaminated site remediation: Are nanomaterials the answer?
11. Will IVF work for a particular patient? The answer may be found in her blood
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
(Date:3/23/2017)... India , March 23, 2017 The report "Gesture ... Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, ... at a CAGR of 29.63% between 2017 and 2022. ... ... ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... CA (PRWEB) , ... August 17, 2017 , ... ... for cancer research and personalized medicine, today announced the launch of a new ... City, Missouri. The study’s goal is to evaluate the potential for early detection ...
(Date:8/16/2017)... (PRWEB) , ... August 16, 2017 , ... ... beneficial microbe delivery system, announced it has secured $2M in funding from an ... City Angels, Carmen Innovations, and SVG Thrive Fund. With this investment, 3Bar is ...
(Date:8/15/2017)... ... , ... Kapstone Medical is proud to announce that it has ... and inventors develop and safeguard their latest innovations. The company has grown from ... of clients in the United States and around the world. , Company Founder ...
(Date:8/15/2017)... ... August 15, 2017 , ... The Conference Forum ... 360° (IO360°) programming through a series of upcoming panels and events. The partnership culminates ... at The Roosevelt Hotel in New York City. , “With our experience in producing ...
Breaking Biology Technology: