Navigation Links
Amazon rainforest more able to withstand drought than previously thought

New research suggests that the Amazon rainforest may be more able to cope with dry conditions than previously predicted. Researchers at the University of Exeter and Colorado State University used a computer model to demonstrate that, providing forest conservation measures are in place, the Amazon rainforest may be more able to withstand periods of drought than has been estimated by other climate models.

Many climate models over predict the water stress plants feel during the dry season because they don't take into account the moisture that the forest itself can recycle in times of drought. In this study, published in the Journal of Climate, the researchers removed unrealistic water stress from their model and found that the moisture that is recycled by the forest is sufficient to reduce the intensity of drought conditions.

Dr Anna Harper from the University of Exeter said: "This study suggests that forests are not only more able to withstand droughts than we had previously thought, but it is the response of the forest itself that can reduce the intensity or length of the drought.

"Moisture recycling works best in large areas of undisturbed forest so it is essential that measures to protect the Amazon rain forest are in place to ensure that that this natural process can be maintained in what may be a drier climate in the future."

Moisture recycling includes the full cycle of rain - from soil moisture to evaporated water vapour and back to rain. It depends on water both evaporating from the ground and also moving through plants from the roots to the leaves. Moisture recycling is an important source of rainfall over the Amazon forest; about one-third of the annual rainfall in the southern Amazon forest can originate from moisture recycling.

The process relies heavily upon the ability of plants to access soil moisture. During particularly severe droughts, trees reach a limit in their ability to access and use soil moisture. In many ecosystem models, plants reach this limit too soon, increasing the water stress that plants are predicted to feel during the dry season. In reality, moisture recycling can increase during the dry season resulting in increased atmospheric moisture, and even rain. This acts to reduce the water stress felt by the forest plants. The researchers took this dry season moisture recycling into account in their new model.

Climate change induced drought is likely to become a bigger problem in the coming years and forest conservation can help to mitigate the consequences. Large areas of undisturbed forest are more able to maintain moisture recycling during dry periods and are better able to recycle rainfall. Disturbed areas of forest, including those bordering pasture, are less able to maintain moisture recycling and as a result are less able to withstand drought.

Moisture recycling does not make the forest immune to drought but it can make the impacts of drought less severe. The optimum conditions for moisture recycling occur during the unstable climatic fluctuations at the end of the dry season.


Contact: Jo Bowler
University of Exeter

Related biology news :

1. 800-year-old farmers could teach us how to protect the Amazon
2. Scientists reconstruct pre-Columbian human effects on the Amazon Basin
3. As Amazon urbanizes, rural fires burn unchecked
4. Warming climate unlikely to cause extinction of ancient Amazon trees, study finds
5. Climate warming unlikely to cause near-term extinction of Amazon trees, but threats remain
6. Deforestation in the Amazon equals net losses of diversity for microbial communities
7. Amazon deforestation brings loss of microbial communities
8. From the Amazon rainforest to human body cells: Quantifying stability
9. Researchers question evaluation methods for protected areas in the Amazon
10. Ecology, economy and management of an agro-industrial Amazon frontier
11. No-win situation for agricultural expansion in the Amazon
Post Your Comments:
Related Image:
Amazon rainforest more able to withstand drought than previously thought
(Date:11/17/2015)... Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" and ... of broadly enabling, pressure cycling technology ("PCT")-based sample preparation ... it has received gross proceeds of $745,000 from an ... "Offering"), increasing the total amount raised to date in ... are expected in the near future. ...
(Date:11/12/2015)... 12, 2015  A golden retriever that stayed healthy ... (DMD) has provided a new lead for treating this ... Broad Institute of MIT and Harvard and the University ... Cell, pinpoints a protective gene ... disease,s effects. The Boston Children,s lab of Lou ...
(Date:11/12/2015)... , Nov. 11, 2015   Growing need ... analytical tools has been paving the way for ... determination of discrete analytes in clinical, agricultural, environmental, ... being predominantly used in medical applications, however, their ... sectors due to continuous emphasis on improving product ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... PUNE, India , November 27, 2015 ... --> Growing popularity of companion ... emerging in cancer biomarkers market with pharmaceutical ... develop in-demand companion diagnostic tests. ... --> Complete report on global ...
(Date:11/26/2015)... , November 26, 2015 ... device company specializing in imaging technologies, announced today that it ... as part of the Horizon 2020 European Union Framework Programme ... a large-scale clinical trial in breast cancer. , ... , --> --> The ...
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... November 25, 2015 Studies reveal ... human plaque and pave the way for more effective treatment ... cats     --> ... diagnosed health problems in cats, yet relatively little was understood ... collaborative studies have been conducted by researchers from the WALTHAM ...
Breaking Biology Technology: