Navigation Links
Alpine Fault study shows new evidence for regular magnitude 8 earthquakes
Date:7/25/2012

RENO, Nev. A new study published in the prestigious journal Science, co-authored by University of Nevada, Reno's Glenn Biasi and colleagues at GNS Science in New Zealand, finds that very large earthquakes have been occurring relatively regularly on the Alpine Fault along the southwest coastline of New Zealand for at least 8,000 years.

The Alpine Fault is the most hazardous fault on the South Island of New Zealand, and about 80 miles northwest of the South Island's main city of Christchurch.

The team developed evidence for 22 earthquakes at the Hokuri Creek site, which, with two additional from nearby, led to the longest continuous earthquake record in the world for a major plate boundary fault. The team established that the Alpine Fault causes, on average, earthquakes of around a magnitude 8 every 330 years. Previous data put the intervals at about 485 years.

Relative motion of Australian and Pacific plates across the Alpine Fault averages almost an inch per year. This motion builds up, and then is released suddenly in large earthquakes. The 530-mile-long fault is among the longest, straightest and fastest moving plate boundary faults in the world. More than 23 feet of potential slip has accumulated in the 295 years since the most recent event in A.D. 1717.

Biasi, working with the GNS Science team led by Kelvin Berryman, used paleoseismology to extend the known seismic record from 1000 years ago to 8,000 years ago. They estimated earthquake dates by combining radiocarbon dating leaves, small twigs and marsh plants with geologic and other field techniques.

"Our study sheds new light on the frequency and size of earthquakes on the Alpine Fault. Earthquakes have been relatively periodic, suggesting that this may be a more general property of simple plate boundary faults worldwide," Biasi, of the Nevada Seismological Laboratory said. "By comparison, large earthquakes on California's San Andreas Fault have been less regular in size and timing."

"Knowing the average rate of earthquakes is useful, but is only part of the seismic hazard equation," he said. "If they are random in time, then the hazard does not depend on how long it has been since the most recent event. Alpine Fault earthquakes are more regular in their timing, allowing us to use the time since the last earthquake to adjust the hazard estimate. We estimate the 50-year probability of a large Alpine fault earthquake to be about 27 percent."

A magnitude 7.1 earthquake centered near Christchurch, the largest city in the South Island of New Zealand, caused extensive damage to buildings on Sept. 2, 2010, and no deaths. On Feb. 22, 2011, a triggered aftershock measuring magnitude 6.3, with one of the strongest ground motions ever recorded worldwide in an urban area, struck the city killing 185 people.


'/>"/>

Contact: Mike Wolterbeek
mwolterbeek@unr.edu
University of Nevada, Reno
Source:Eurekalert  

Related biology news :

1. Friendly to a fault, yet tense: Personality traits traced in brain
2. Johns Hopkins researchers uncover genes at fault for cystic fibrosis-related intestinal obstruction
3. Understanding faults and volcanics, plus life inside a rock
4. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
5. Law that regulates shark fishery is too liberal: UBC study
6. New study will help protect vulnerable birds from impacts of climate change
7. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
8. BYU study: Using a gun in bear encounters doesnt make you safer
9. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
10. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
11. Crystal structure of archael chromatin clarified in new study
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Alpine Fault study shows new evidence for regular magnitude 8 earthquakes
(Date:11/29/2016)... , Nov. 29, 2016   ... identification and object recognition technologies, today released ... for fingerprint recognition solutions that run on ... fingerprint template using less than 128KB of ... compact devices that have limited on-board resources, ...
(Date:11/22/2016)... November 22, 2016 According to the new market ... Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact ... MarketsandMarkets, the market is expected to grow from USD 10.74 Billion in ... 16.79% between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)... Global Market Watch: Primarily supported by ownership types; ... Academics) market is to witness a value of US$37.1 billion ... Compounded Annual Growth Rate (CAGR) of 10.75% is foreseen from ... 2014-2020. North America is not way ... Europe at 9.56% respectively. Report Focus: ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... -- This report analyzes the worldwide markets for Biostimulants in ... & Fulvic), Extract Based, and Others. The report also analyzes ... Turf, Row Crops, and Others. The report provides separate comprehensive ... Japan , Europe , ... and Rest of World. Annual estimates and forecasts are provided ...
(Date:12/8/2016)... 8, 2016  Biotheranostics today announced that new ... the Breast Cancer Index (BCI) in identifying which ... most at-risk for disease recurrence and might benefit ... three studies advancing the understanding of the value ... biology and inform decisions related to patient treatment. ...
(Date:12/8/2016)... 8, 2016 Oxford ... erweitert seine Palette an anpassbaren SureSeq™ NGS-Panels mit ... Panels, das ein schnelles und kostengünstiges Studium der ... bietet eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, ... einzigen kleinen Panel und ermöglicht eine individuelle Anpassung ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... World Technology Awards. uBiome is one of just six company finalists in the ... In addition to uBiome, companies nominated as finalists in this year’s awards include ...
Breaking Biology Technology: