Navigation Links
Algorithm finds the network -- for genes or the Internet

Human diseases and social networks would seem to have little in common. However, at the crux of these two lies a network, communities within the network, and farther even, substructures of the communities. In a recent paper in Physical Review E 77:016104 (2008), Weixiong Zhang, Ph.D., Washington University associate professor of computer science and engineering and of genetics, and his Ph.D. student, Jianhua Ruan, published an algorithm, a recipe of computer instructions, to automatically discover communities and their subtle structures in various networks.

Many complex systems can be represented as networks, Zhang said, including the genetic networks he studies, social networks and the Internet. The community structure of networks features a natural division of the network where the vertices in each subnetwork are highly involved with each other, though connected less strongly with the rest of the network. Communities are relatively independent of one another structurally, but it is thought that each community may correspond to a fundamental functional unit. A community in a genetic network usually contains genes with similar functions, just as a community on the World Wide Web often corresponds to web pages on similar topics.

All Zhang and Ruan need are data. Their algorithm is more scalable than existing algorithms and can detect communities at a finer scale and with a higher accuracy than similar algorithms. The impact of having such a computational biology tool is in genomics, where researchers may be better able to identify and understand communities of genes and their networks as well as how they cooperate in causing diseases, such as sepsis, virus infections, cancer and Alzheimers disease.

Versatile math tool

The algorithm is so versatile that it has been applied to identify the community structure of a network of co-expressed genes involved in bacterial sepsis. This is a tool not only for biological research, but also for sociological research, Zhang said. It can determine, for instance, how people interact in social networks and how scientists collaborate in scientific research.

In biological systems there are lots of communities with many proteins involved to form complexes.

We can use this tool to identify structures embedded in the data., Zhang said. Weve identified the substructures of three different RNA polymerase complexes from noisy data, for instance, which are crucial for gene transcription.

Zhang began his computer science career as a specialist in artificial intelligence, but in recent years he has expanded to bring his skills to computational biology. His main interest and ambition are to use computational means to solve some basic biology problems and problems related to human diseases. For example, his group studied a basic problem of the transcription mechanism of microRNAs, which are small noncoding regulatory RNAs that regulate the development and stress responses of nearly all eukaryotic species that have been studied. Using machine learning techniques, Zhang and his collaborators showed that almost all intergenic microRNA genes in four model species, human, mouse, rice and Arabidopsis, are transcribed by RNA polymerase II, which transcribes protein-coding genes. The results were published in PLoS Computational Biology, 3(3):e37 (2007).

Multidisciplinary research that combines computational approaches with biological data is a hallmark of research themes in Zhang's group. As another example, in a paper published in Genome Biology, 7(6):R49 (2006), Zhang and his Ph.D. student, Guandong Wang, developed an algorithm, called WordSpy, for identifying cis-regulatory elements short DNA sequences that are critical for the regulation of gene expression from a large amount of genome sequences.

Stealth from the ancient Greeks

The algorithm was inspired by an old information-hiding technique called stegography, which can be traced back to ancient Greek. As such, their method can be used to analyze not only genomic sequences but also natural languages. In fact, their method has been extended to segment words and phrases in Chinese.

Not only has he studied networks, Zhang also formed a broad network of collaborations with scientists across the Washington University campus and outside of the university. The problems he has been interested in are diverse, ranging from stress responses and virus infection in plants, such as rice, to human diseases, including Alzheimer's disease, herpesvirus infection, sepsis, cardiac hypertrophy, lung cancer and lung transplantation. The computational tools his group has developed are helping him and his collaborators come to grips with how perturbation to gene expression can lead to complex traits and human diseases as well as how microRNAs regulate gene expression.

Zhang was recently awarded a grant from the Alzheimer's Association to develop computational systems biology methods for analyzing gene expression perturbation in diseased brains. He has been collaborating with scientists in the Washington University School of Medicine and Scripps Institute in La Jolla, California, to study roughly 30 postmortem brain samples of people who died from Alzheimers disease.

Im interested in modeling gene expression perturbation in diseased brains, and am looking for the genetic signature, Zhang said. Due to the complexity of Alzheimer's disease, we are developing other tools and will have to use all the tools we have and can get. Its a polygenic disease, with a lot of genes at work . Im sure well find that a network is involved.


Contact: Wexiong Zhang
Washington University in St. Louis

Related biology news :

1. University of Oregon researcher finds that on waters surface, nitric acid is not so tough
2. Study finds environmental tests help predict hospital-acquired Legionnaires disease risk
3. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
4. Study finds Viagra increases release of key reproductive hormone
5. Survey finds elevated rates of new asthma among WTC rescue and recovery workers
6. St. Jude finds factors that accelerate resistance to targeted therapy in lymphoblastic leukemia
7. Study finds a high rate of asthma in college athletes
8. Ecologist finds dire devastation of snake species following floods of 93, 95
9. Men shed light on the mystery of human longevity, study finds
10. JILA finds flaw in model describing DNA elasticity
11. Americans remain pessimistic about the environment, Stanford-AP survey finds
Post Your Comments:
(Date:11/11/2015)... Minn. , Nov. 11, 2015   MedNet Solutions ... entire spectrum of clinical research, is pleased to announce that ... in Clinical Trials (PCT) event, to be held November ... be able to view live demonstrations of iMedNet ... and learn how iMedNet has been able to ...
(Date:11/4/2015)... November 4, 2015 --> ... report published by Transparency Market Research "Home Security Solutions Market ... Forecast 2015 - 2022", the global home security solutions market is ... by 2022. The market is estimated to expand at ... 2015 to 2022. Rising security needs among customers at ...
(Date:10/29/2015)... Oct. 29, 2015  Rubicon Genomics, Inc., today ... distribution of its DNA library preparation products, including ... new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been ... of NGS libraries for liquid biopsies--the analysis of ... prognostic applications in cancer and other conditions. Eurofins ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... Copper ... unless it is bound to proteins, copper is also toxic to cells. With ... Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in the ...
(Date:11/24/2015)... 24, 2015 --> ... report "Oligonucleotide Synthesis Market by Product & Services (Primer, ... Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic ... the market is expected to reach USD 1,918.6 Million ... a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... New York , November 24, 2015 ... to a recent market research report released by Transparency ... projected to expand at a CAGR of 17.5% during ... "Non-invasive Prenatal Testing Market - Global Industry Analysis, Size, ... estimates the global non-invasive prenatal testing market to reach ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh ... Insertion points for in-line sensors can represent a weak spot where leaking process ... series of retractable sensor housings , which are designed to tolerate extreme process ...
Breaking Biology Technology: